Activity Coefficients (Activity Models)

Activity Models

The step from molar concentrations (analytical data) to activities (used in mass-action law calculations) requires the calculation of activity coefficients γi. For this task several approaches are available, whereas each activity model has its own range of validity defined by the ionic strength I as shown here:1

  Model Equation   Validity
(1) Debye-Hückel \(\lg \gamma_{i} = -Az^{2}_{i} \ \sqrt{I}\)   I < 10-2.3 M
(2) Extended Debye-Hückel \(\lg \gamma_{i} = -Az^{2}_{i} \ \left ( \dfrac{\sqrt{I}}{1+Ba_i\sqrt{I}} \right )\)   I < 0.1 M
(3) Davies \(\lg \gamma_{i} = -Az^{2}_{i} \ \left ( \dfrac{\sqrt{I}}{1+\sqrt{I}} - 0.3 \!\cdot\! I\right )\)   I ≤ 0.5 M
(4) Truesdell-Jones   (WATEQ Debye-Hückel) \(\lg \gamma_{i} = -Az^{2}_{i} \ \left ( \dfrac{\sqrt{I}}{1+B a_i^0 \sqrt{I}}\right ) + b_i \!\cdot\! I\)   I < 1 M

Here, zi is the valence of ion i. All quantities carrying the subscript i are ion-specific parameters (ai, ai0 and bi). On the other hand, the parameters A and B depend on temperature T and the dielectric constant ε:

(5a) A = 1.82 ∙ 106 (εT)-3/2
(5b) B = 50.3 (εT)-1/2

For standard conditions (water at 25) we get

(6a) A = 0.5085 M-1/2
(6b) B = 3.281 M-1/2 nm-1

Please note the length unit: 1 nm = 10-9 m = 10 Ångström.

The relationship between the activity models becomes most evident when they are all traced back to the simple Debye-Hückel formula in 1. Denoting the “Debye-Hückel building block” by lg γi0 the equations above can be rewritten as:

  Model Equation   Validity
(1b) Debye-Hückel \(\lg \gamma_{i}^{0} \ =\ -Az^{2}_{i} \ \sqrt{I}\)   I < 10-2.3 M
(2b) Extended Debye-Hückel \(\lg \gamma_{i} \ =\ \dfrac{\lg \gamma_{i}^{0}}{1+Ba_i\sqrt{I}}\)   I < 0.1 M
(3b) Davies \(\lg \gamma_{i} \ =\ \dfrac{\lg \gamma_{i}^{0}}{\ 1+\sqrt{I}\ } \ + \ 0.3 Az^{2}_{i} \!\cdot\! I\)   I ≤ 0.5 M
(4b) Truesdell-Jones \(\lg \gamma_{i} \ =\ \dfrac{\lg \gamma_{i}^{0}}{1+B a_i^0 \sqrt{I}} \ + \ b_i \!\cdot\! I\)   I < 1 M

The activity coefficients decrease steadily when the ionic strength I rises. However, both the Davies and Truesdell-Jones equations obey an additive term that causes a rise again when I approaches 1 mol/L – see diagrams below.

activity models

Model Hierarchy. The empirical model of Truesdell-Jones in 4 and 4b, with its two ion-specific parameters ai0 and bi, represents the most general approach. By specifying and/or ignoring these two parameters we obtain the other three activity models.

Extended Debye-Hückel Equation

Due to the narrow validity range of the Debye-Hückel formula in 1, this approach was extended in 2 by an additional term in the denominator containing the parameters B and ai. The extended formula takes into account the fact that the central ion has a finite radius (instead of a point charge). The parameter ai represents the effective size of the corresponding ion, for example:2

a = 0.9 nm for H+, Fe+3, Al+3
a = 0.8 nm for Mg+2
a = 0.6 nm for Ca+2, Fe+2
a = 0.4 nm for Na+, HCO3-, SO4-2
a = 0.3 nm for K+, NH4+, OH-, Cl-, NO3-

Note. The ion size parameter ai is an empirical fitting parameter; it is larger than the ion radius because it includes some aspect of hydrated shell.

Davies Equation

The Davies formula in 3 is an empirical approach which differs in two respects from the extended Debye-Hückel 2:

Irrespective of the fact that there is no strict theoretical justification for the additional term, it improves the empirical fit to higher ionic strengths up to I ≈ 0.5 M. Because of its mathematical simplicity and lack of free parameters the Davies equation is a preferred choice in hydrochemistry modeling (see below).

For neutral species (zi = 0) the Davies formula collapses to the Setchenow equation: lg γi = const⋅I.

Truesdell-Jones (WATEQ Debye-Hückel)

The empirical approach of Truesdell and Jones3 was proposed for the hydrochemistry program WATEQ in 1974 with the aim of describing NaCl-containing solutions. The additional fit parameter bi in 4 extended the scope to seawater (i.e. I = 0.72 M and above).

Equation (4) is based on two fit parameters: ai0 and bi, whereas the effective ion radius differs from the extended Debye-Hückel model (ai0 ≠ ai). Typical values for bi are in the order of 0.1.

Example: Activity Coefficient for Mg

The subsequent two diagrams plot the activity coefficient γi of the ion Mg+2 as a function of the ionic strength:

• upper diagram: I = 0 … 2 M (linear)
• bottom diagram: I = 0.0001 … 5 M (logarithmic)

The calculations are based on the following ion-specific parameters:

zi = 2  
ai  = 0.80 nm for Extended Debye-Hückel
ai0 = 0.55 nm for Truesdell-Jones 4
bi = 0.2 for Truesdell-Jones 4

[Please note: The diagrams display γi on the y-axis (and not lg γi).]

activity coefficient for Mg+2 as function of ionic strength

activity coefficient for Mg+2 as function of ionic strength (log scale)

At I=0 (ideal solution) the activity coefficient is 1. It decreases with increasing ionic strength I. At high ionic strength (I ≈ 1 M) there is again an increase of γi, but only for Davis and Truesdell-Jones caused by the additive terms in 3 and (4).

What Activity Model is used in the Program?

The program aqion, which is based on PhreeqC, uses

Model Parameters Name Used in aqion?
Davies 0 yes (default)
Extended DH 1 ai no
Truesdell-Jones 2 ai0, bi yes

The type of the activation model is set in the thermodynamic database wateq4f.dat for each aqueous species separately.

High-Saline Solutions (I > 1 M)

The Pitzer equation is a much more sophisticated ion interaction model that has been used in very high strength solutions up to I = 20 M. It requires a lot of additional parameters (virial coefficients). The Pitzer model is not implemented in aqion.

References & Remarks

  1. lg (= log10) denotes the decadic logarithm. 

  2. The effective ionic radii are selected from the classical paper: J. Kielland, J. Am. Chem. Soc., 59, 1675 (1937). Unit conversions: 1 Å = 0.1 nm = 10-8 cm. 

  3. A.H. Truesdell, B.F. Jones: WATEQ – A computer program for calculating chemical equilibria of natural waters; Journal of Research, U.S.G.S. v.2, p.233-274, 1974 

  4. These data are taken from the thermodynamic database wateq4f. They are defined in the data block for Mg+2 in the line -gamma 5.5 0.200, where the first and second parameters represent ai0 and bi. Note that ai0 is in units of Ångström, i.e. 5.5 Å = 0.55 nm.  2

  5. If no value for bi is provided, then the bi = 0.1 is used in the calculations. 

[last modified: 2021-01-15]