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pHj pH of equivalence point EPj: pHj = 1
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Z charge of highest protonated acid species —
zav average charge of acid: zav = ZT /CT —
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Some Definitions

Acid Species. The polyprotic acid HNA has N +1 aqueous species, abbreviated by:

[ j ] ≡ [HN–jAZ–j] for j = 0, 1, 2, . . . N (1)

Here the integer j also labels the electric charge of species j:

zj = Z − j with
{

Z = 0 for common acids
Z ≥ j for zwitterionic acids (e.g. amino acids) (2)

Total Concentration. The sum of all species yields the total concentration of the
acid:

CT ≡ [HNA]T =
N∑

j=0

[ j ] (mass balance) (3)

Ionization Fractions. Ionization fractions are ratios of the acid-species concen-
trations to the total amount of acid:

aj ≡ [ j ]
CT

for j = 0, 1, 2, . . . N (4)

Activities vs Concentrations. In chemical thermodynamics one has to distinguish
between molar concentrations and activities (cf. Appendix A):

• concentrations denoted by square brackets [ j ]
• activities denoted by curly braces {j}

x and pH. The activity of H+ will be abbreviated by x:

x ≡ {H+} = 10−pH ⇐⇒ pH = − lg x (5)

vii
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The difference between theory and practice is
smaller in theory than it is in practice

— Folklore

1
Introduction

Contents
1.1 Short History & State of the Art . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Structure of the Lecture . . . . . . . . . . . . . . . . . . 6

This lecture provides a detailed math description of the acid-base system,
leading to analytical formulas that anyone can easily apply without effort to plot
titration curves, Bjerrum plots and other diagrams. It covers and explains the
first part of the review article [1].

1.1 Short History & State of the Art

1.1.1 Three Concepts
The theory of acid-base reactions in water is not new; the subject has been
studied for more than 100 years. Three main concepts were successively developed
during this period:

• In 1884, Arrhenius provided the first modern, molecular-based definition:
An acid is a substance that releases H+ in water; a base is a substance that
releases OH–. In this way, he predicted the dissociation into ions even before
charged elementary particles were accepted and established (in the late 1890s).
H+ ions are just protons.

• In 1923, Brønsted and Lowry extended the concept with the idea that an
acid-base reaction involves a proton transfer from a proton donor (the acid)
to a proton acceptor (the base). The solvent no longer has to be water, as
the new concept also applies to liquid ammonia, alcohol, benzene, and other
non-aqueous solutions.

1



2 1.1. Short History & State of the Art

• About 15 years later, Lewis went one step further and stretched the “proton-
transfer” concept of conventional acids and bases to the much broader concept
of “electron-pair transfer”: Acids are substances able to “accept” a lone pair
of electrons from another molecule, designated as a base. The latter can also
be used for ligand-metal ion coordination reactions and substitution reactions
in organic chemistry.

The three concepts in Table 1.1 are shown as Venn diagram in Fig 1.1, where the
Lewis concept encompasses both Brønsted-Lowry and Arrhenius theories.1

Table 1.1: Three acid-base concepts.

acid base
Arrhenius (1884) contains H+ contains OH–

Brønsted-Lowry (1923) proton (H+) donor proton (H+) acceptor
Lewis (1938) e– pair acceptor e– pair donor

Figure 1.1: Relationship between
acid-base concepts.

Lewis acids

Brønsted-
Lowry

Arrhenius

(m
o

st gen
eral)

The proton-transfer mechanism makes acid-base reactions very fast, so that
chemical equilibrium is always established in a short time. This allows the application
of a thermodynamic description (while slow reactions, such as redox processes,
require more sophisticated kinetic approaches). The framework was established
long ago in form of the Law of mass action (by Guildberg and Waage in
1864), where the equilibrium state is characterized by one single quantity — the
equilibrium constant K. In modern-day chemistry this is derived from the Gibbs
energy (originally established in 1873).

1.1.2 State of the Art
Acid-Base Equilibria

The topic of acid–base equilibria is covered in an extensive bibliography, usually
focusing on mono- and diprotic acids, which is the entry point to understanding

1While acid-base reactions interchange electron-pairs, redox reactions are based on the exchange
(of a sequence) of single electrons.
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1. Introduction 3

chemical equilibrium reactions per se. The list of classical textbooks and monographs
is long and stems from various subfields, such as hydrochemistry [2–4] as well as
general and analytical chemistry [5–8]. This is accompanied with several modeling
approaches, e.g., [9–11]. More advanced modeling approaches can be found for
polyprotic acids.

Polyprotic Acids

The mathematical description of polyprotic acids HNA (with N ≥ 3) is a special
topic that extends the traditional view on acid–base reactions. Algebraic equations
are presented in [12–18]; their application to titration and buffer capacities can be
found in [19–22] and in [23–28]. Many of the developments come from areas outside
conventional hydrochemistry (e.g., organic and bio/med chemistry), which is the
playground of proton-binding macromolecules such as nucleic acids and fulvic/humic
acids. This also encourages a statistical description [29–32].

Dissociation vs Association Reactions

There are two principal ways of math description:

• the approach in hydrochemistry (based on dissociation reactions with reference
state HNA)

• the approach employed in organic and biochemistry (based on association
reactions with reference state A–N)

The present lecture follows the first approach. [The interrelationship with the
second approach is established in [1], Section 2.5.]

Titration & Buffer Capacities

Titration and buffer capacities are summarized in an excellent review article by
Asuero and Michałowski [24]. This and other papers [22–26, 28] rely on association
reactions (with reference state A–N), so one has to be careful when comparing
the formulas with the present approach.

[Most of these papers take the dilution during titration into account by explicitly
using the volume of the titrant. This effect is ignored in this lecture to keep
the formulas simple.]

LMA vs GEM

For the general case of aquatic systems (as mixtures of any number of acids and bases
plus solid and gaseous phases), there are two prototypes of numerical approaches:

• LMA: models that are based on the law of mass action (LMA) (e.g., PhreeqC
[33, 34] and many others)

• GEM: models that are based on Gibbs energy minimization [35, 36]

Version: December 17, 2023



4 1.2. Motivation

1.2 Motivation
Today, computers solve nonlinear systems numerically in the shortest time with high
quality, which is a great help in dealing with complex real-world tasks (and we are
grateful for that). However, by delegating everything to computers, we sometimes
lose the overview of the underlying principles and functional relationships (digital
data are too incomplete/imprecise to understand the deeper aspects of reality).
Starting from the laws of mass action and mass/charge balance, a mathematical
solution is provided in the form of simple and smooth analytical formulas for
acid–base reactions. This is performed for the general case of N -protic acids,
where N can be any integer (N ≥ 1).

[In [1], the approach was applied to the broad class of zwitterionic acids HNA+Z

(amino acids, NTA, EDTA, etc.), which embeds all “ordinary acids” as a special
sub-class characterized by Z = 0.]

Why do we need equations/formulas for N >!2?

Usually (and this is the first that comes to mind) N is a small number: 1, 2 or 3 for
monoprotic, diprotic and triprotic acids. However, in reality, there are compounds
with more protons, such as EDTA with N = 6 (discussed in [1], Section 4.1.6) or
other macromolecules in biochemistry and/or mixtures thereof. Moreover, when N
is treated as a variable integer, the equations teach us things that might otherwise
be non-obvious (e.g., classification of equivalence points in § 5.4).

Is the approach mathematically strict?

The math derivation is strict. For this purpose, it is assumed that the activities
(that enter the mass action laws) are replaced by molar concentrations, which
is justified either for dilute systems or for non-dilute systems using conditional
equilibrium constants (cf. seawater example in § 7.5). Deviations in the analytical
model from numerical activity-based calculations are discussed in § 7.6.

What is the difference to standard approaches given in textbooks?

In textbooks [2–7], an algebraic solution of the acid–base problem is usually provided
for diprotic acids (N = 2) in implicit form, namely as a polynomial of degree 4
in x = 10−pH (quartic equation!) — see, e.g., [2] (p. 107) or Eq (5.38) below.
That is the common way to handle the acid–base problem. In the general case
of N -protic acids, this procedure leads to polynomials of order N +2, where, for
N >4, there is principally no algebraic solution (according to the Abel–Ruffini
theorem). This dilemma will be avoided in the present approach. However, before
we start, let us explain this in another way.

In titration, a titrant (strong base of amount CB) is added to the analyte (N -
protic acid with amount CT ), resulting in a certain pH value. So, one is tempted
to write the pH as a function of CT and CB, that is:

pH = pH (analyte, titrant) = pH(CT , CB) or pH = pH(CT , n) (1.1)
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1. Introduction 5

where n = CB/CT . However, as mentioned above, these relations cannot be
expressed in the form of an explicit function; they only exist implicitly in the
form of polynomials of degree N +2 (see (4.11) on page 39). So we put the whole
thing “from head to toe” by providing a strict algebraic solution in the form of the

explicit function: n = n(pH, CT ) or n = n(x, CT ) (1.2)

From the viewpoint of (1.2), the polynomials are then considered as the inverse
task in § 4.2.1.

The lecture contains over 100 formulas. What is the central formula?

The central formula is the analytical formula for the explicit function (1.2):

n(x, CT ) = Y1(x) + w(x)
CT

(1.3)

(symbols are explained in the text). This formula contains all information about
the acid–base system in condensed form.

In this lecture, the function n(x) appears under several names: equivalence
fraction, titration function/curve, and normalized buffer capacity (because it
measures the distance to EP0).

As sketched in Fig 1.2, depending on whether n is a specific discrete number or
a real function, different aspects appear: the equivalence points (as “special equilib-
rium states”) or buffer capacities as “distances” between two equilibrium states.

equivalent frac�on

discrete n real n = n(x)

integer
EPn

(x = 10-pH)

half-integer
semi-EPn

special equilibrium states

buffer capaci�es

“distance” between
equilibrium states

Figure 1.2: Equivalent
fraction n as the central
quantity from which all
other quantities and
formulas will be derived in
this lecture.

What does it mean to be a simple and smooth analytical formula?

“Simple” means that the analytical formulas are easy to handle in a Lego-like manner
from plain constructs, as summarized in § 5.2.4. There is no need for programming
or root-solving methods. All results and diagrams in this lecture were created
with Excel, and anyone can easily reproduce them.

“Smooth” means that the analytical formula n = n(x) or n = n(pH) — as
well as its building blocks — are infinitely derivable functions that offer calculus
in the form of pH derivatives and integrals (a feature that is not possible for
numerical solutions/data). The pH derivatives convert buffer capacities to buffer
intensities; pH derivatives are also used to identify equivalence points (EPs) as
local minima/maxima and/or inflection points.
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6 1.3. Structure of the Lecture

1.3 Structure of the Lecture
Chapter 2 introduces the concept of polyprotic acids HNA for any number of protons
N (including all common mono-, di-, and triprotic acids characterized by N =
1, 2, 3). Mathematically, this results in a system of N +3 nonlinear equations
(cf. (2.32) to (2.37) on page 15). The goal of the next three Chapters is to bundle
this set of N +3 equations into a single analytical formula. This is done in three
subsequent steps (see also Fig 1.3):

• Chapter 3: 1-component system “HNA”
• Chapter 4: 2-component system “HNA + H2O”
• Chapter 5: 3-component system “HNA + H2O + base” (acid-base system)

In Chapter 3, we start with the 1-component system i.e., the N -protic acid itself,
which is fully determined by N acidity constants K1 to KN . In Chapter 4, H2O
is included (by incorporating the self-ionization of water). In Chapter 5, the 2-
component system is extended to a 3-component “acid–base system”, which opens
the door to the description of acid–base titrations. In all of these considerations,
attention is drawn to the equivalence points (definition and classification), which
can hardly be overestimated.

Figure 1.3:
Relationships
between 1-, 2-, and
3-component systems.

HNA
alone

Kj, aj, Y1(x)

1-component
system

2-component
system

HNA + H2O

HNA + 
strong base

3-component
system

HNA + H2O +
strong base

n = 0

CT �∞

CT �∞

n = 0

(CB= 0)

(CB= 0)

[Note. Regarding the connection between the three subsystems in Fig 1.3, the
numbers 1/CT and CB/CT act as “coupling constants” of the acid to the water
(autoprotolysis) and to the base.]

The concept of buffer capacities is introduced in Chapter 6. In Chapter 7,
the derived concepts and formulas are applied to the carbonate system, such as
alkalinity, open vs closed CO2-system, seawater, etc.

Chapter 8 briefly discusses some special/additional topics: (i) strong polyprotic
acids, (ii) mixtures of acids, and (iii) the superposition of N monoprotic acids
(in order to generate an N -protic acid).

Final Note

The presented mathematical framework is based on analytical formulas. In this
way, it widens our understanding of the acid-base system. However, it will and can
never replace numerical models like PhreeqC [33, 34], aqion [37] or other software,
which are able to handle real-world problems (including activity corrections, an
arbitrary number of species and phases, aqueous complex formation, etc.).
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Lots of things get better as they get
shorter.

— Anonymous

2
Polyprotic Acids

Contents
2.1 What is an Acid? . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Basic Set of Equations . . . . . . . . . . . . . . . . . . . 12

2.1 What is an Acid?

2.1.1 Proton Transfer
An acid HA is a proton donor ; it releases H+ ions (more precisely: H3O+) when
dissolved in water:

HA = H+ + A– (2.1)

which is a shorthand for HA(aq) + H2O(l) = H3O+(aq) + A–(aq).
The definition of acids as proton donors is fully consistent with Arrhenius’

conception that acids are substances that contain and release H+ ions. In the case
of bases, however, the concepts of Arrhenius and Brønsted-Lowry differ:

Arrhenius base contains OH– (e.g. NaOH, KOH, NH4OH)
Brønsted-Lowry base H+ acceptor (e.g. OH–, Cl–, NH3)

This allows all Arrhenius bases1 to be combined into a single H+ acceptor equation:

OH– + H+ = H2O (2.2)

1For example, an Arrhenius base can be abbreviated by BOH, where the cation B+ stands
for Na+, K+, NH +

4 etc.

7



8 2.1. What is an Acid?

Conjugate Acids

Now something new comes into play (that the Arrhenius concept does not have):
conjugate acid-base pairs. Adding (2.2) to (2.1) yields:

HA + OH– = H2O + A–

acid + base = conjugate acid + conjugate base
(of base OH–) (of acid HA)

(2.3)

Note that H+ ions do not occur in this overall reaction because they are transferred
between conjugate acid-base pairs. H+ ions occur only in “half reactions”, such
as in (2.1) or (2.2):

acid
(proton donor) = H+ + conjugate base

(proton acceptor) (2.4)

Eq (2.4) is a general concept that applies to any polyprotic acid, namely for each
individual dissociation step (as shown in (2.15) to (2.17) on page 10).

Autoprotolysis

One special case of (2.3) is the self-dissociation of water:

H2O + H2O = H3O+ + OH– (2.5)

Here, the water acts simultaneously as an acid and a base. Such substances
are termed ampholytes.

2.1.2 Acidity Constants
The equilibrium constant of reaction (2.1) is called acidity constant. There are
two types of acidity constants:

thermodynamic
acidity constant: Ka = {H+}{A–}

{HA}
(based on
activities) (2.6)

conditional acidity constant
(of mixed type):

cKa = {H+} [A–]
[HA]

(based on
concentrations) (2.7)

The last equation represents a mixed-type constant since we use the activity for
H+ but the concentrations for all other components.

The two equations are special types of the law of mass action. The value of Ka

signifies the strength of the acid (strong acids: Ka large; weak acids: Ka small).

Activities

Activities are “effective concentrations” which can be calculated by semi-empirical
activity corrections γj for each species j (cf. Appendix A):

activity (effective concentration): {j} = γj [j] (2.8)
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2. Polyprotic Acids 9

The activity corrections increase with the ionic strength I of the solution. In
ideal or near-ideal solutions (i.e. diluted systems) we have I ≃ 0 and γj ≃ 1, so
that activities and concentrations are (almost) the same.

Note. The derivations in this lecture rely on concentrations (except for H+, where
we use the activity). Thus, the obtained results are valid either in dilute systems
or by using the conditional acidity constant cKa. We consider it as an assumption
that applies to the whole text (and skip the small-letter superscript c on cKa).

lg K Value

In practice, it is convenient to use the decadic logarithm of (2.7):

lg Ka = lg {H+} + lg [A–] − lg [HA] (2.9)

The negative decadic logarithm of the acidity constant is then abbreviated by

pKa = − lg Ka (2.10)

which parallels the definition of pH as pH = − lg{H+}. With pKa, Eq (2.9) converts
to

pKa = pH − lg [A–] + lg [HA] (2.11)

Henderson-Hasselbach Equation

Eq (2.11) can also be written as the so-called Henderson-Hasselbach equation:

pH = pKa + lg [A–]
[HA] = pKa + lg [ proton acceptor ]

[ proton donor ] (2.12)

Here, the term lg [A–]/[HA] vanishes for equal concentrations. In other words, the
pKa value is just the pH at which the amount of both species is equal, i.e. at
which 50% of the species HA is dissociated into species A–. Therefore, it is no
surprise that the pKa value is also called the “semi-equivalence point” –– more
on this topic in § 3.2.2 and particularly in (3.44) below.

The pKa value allows a classification into strong and weak acids: the smaller
the pKa, the stronger the acid — quite the opposite to a Ka-based ranking
(cf. (2.18) below).

Gibbs Energy

In chemical thermodynamics, there is a fundamental link between the equilibrium
constant K and the (change of) Gibbs energy:

∆G0 = −RT ln K (2.13)

where R = 8.314 J/(mol·Kelvin) is the gas constant and T the temperature in
Kelvin. This equation can be rearranged to lg K:

lg K = − ∆G0

ln 10 · RT
= − ∆G0

2.303 · RT
or pKa = ∆G0

2.303 · RT
(2.14)

An example for the relationship between ∆G0 and several pK values (of a triprotic
acid) is given in Fig 3.1 on page 20.

Version: December 17, 2023



10 2.1. What is an Acid?

2.1.3 Mono-, Di-, and Triprotic Acids
Acids can donate one, two, or more protons H+. Typical examples are listed in Ta-
ble 2.1.

Table 2.1: Typical mono-, di-, and triprotic acids.

monoprotic acid (HA) diprotic acid (H2A) triprotic acid (H3A)
HCl H2CO3 H3PO4
HNO3 H2SO4 H3AsO4
HI H2CrO4 citric acid
HF H2SeO4
formic acid oxalic acid

A monoprotic acid is characterized by a single acidity constant K1 (= Ka),
a diprotic acid by two acidity constants (K1, K2), and a triprotic acid by three
acidity constants (K1, K2, and K3):

1st dissociation step: H3A = H+ + H2A– K1 (2.15)
2nd dissociation step: H2A– = H+ + HA–2 K2 (2.16)
3rd dissociation step: HA–2 = H+ + A–3 K3 (2.17)

Ranking

Protons are released sequentially one after the other, with the first proton being
the fastest and most easily lost, then the second, and then the third (which is the
most strongly bound). This yields the following ranking of acidity constants
of a polyprotic acid:2

K1 > K2 > K3 or pK1 < pK2 < pK3 (2.18)

For example, phosphoric acid has pK1 = 2.15, pK2 = 7.21, and pK3 = 12.35.
Other examples for acidity constants are listed in Table 2.2.

Table 2.2: pK values of four common N -protic acids at 25°C.

N acid formula type pK1 pK2 pK3 Ref
1 acetic acid CH3COOH HA 4.76 [38]
2 (composite) carbonic acid H2CO3 H2A 6.35 10.33 [39]
3 phosphoric acid H3PO4 H3A 2.15 7.21 12.35 [38]
3 citric acid C6H8O7 H3A 3.13 4.76 6.4 [38]

Note 1. In Table 2.2, the composite carbonic acid is the sum of the unionized
species CO2(aq) and the pure acid: H2CO*

3 = CO2(aq) + H2CO3; to simplify the
notation, we omit the asterisk (*) on H2CO*

3 throughout the text.
Note 2. The acids in the table are so-called “common acids”. Additionally,

there are also zwitterionic acids (amino acids). The latter are described in [1].
2In organic acids, the second and third acidity constants can be similar.
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2. Polyprotic Acids 11

2.1.4 Strong Acids vs Weak Acids
Monoprotic Acids

Unlike weak acids, strong acids dissociate completely in water. Let us consider a
monoprotic acid specified by Ka and the amount CT ≡ [HA]T (which is de facto
the acid’s initial concentration before it dissolves). In the equilibrium state, the
total concentration splits into an undissociated and a dissociated part:

CT = [HA] + [A–] or 1 = a0 + a1 (2.19)

where a0 = [HA]/CT and a1 = [A–]/CT are the “ionization fractions”. The difference
between strong and weak acids is summarized in Table 2.3.

Table 2.3: Strong vs weak acids (greatly simplified).

strong acid weak acid
acidity constant Ka ≫ 1 Ka ≤ 1
pKa = − lg Ka pKa < 0 pKa > 0
{H+} ≃ [H+] = 10−pH [H+] ≃ CT [H+] ≪ CT

undissociated acid [HA] ≃ 0 or a0 ≃ 0 [HA] ≃ CT or a0 ≃ 1
dissociated acid [A–] ≃ CT or a1 ≃ 0 [A–] ≪ CT or a1 ≪ 1
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beyond real-world
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Figure 2.1: Undissociated fraction a0 for strong and weak acids. Strong acids are
completely dissociated in the pH range above pH ≃ 0.

Polyprotic Acids

The classification in Table 2.3 can also be applied to N -protic acids if we rename
the acidity constant Ka by the 1st dissociation constant K1.
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12 2.2. Basic Set of Equations

Undissociated Fraction

Weak acids are characterized by a non-negligible amount of undissolved acid.
Mathematically, the undissociated part is equivalent to the ionization fraction a0:

undissociated acid: a0 ≡ [HNA]
CT

≃ 1
1 + Ka/x

with x = 10−pH (2.20)

This quantity as a function of pH is displayed in Fig 2.1 for several acids. As
expected, strong acids are completely dissociated in real-world applications (where
pH ≥ 0). The small circles mark the position of the corresponding pK1 values
(which are the inflection points of a0).

2.1.5 Weak Acids vs Dilute Acids
A weak acid and a dilute acid are two different things. The first relies on the acidity
constants Ka (which is a thermodynamic property of the acid that nobody can
change), while the second relies on the amount CT of a given acid:

weak acid ↔ strong acid ⇔ small Ka ↔ large Ka

dilute acid ↔ concentrated acid ⇔ small CT ↔ large CT

One cannot make a weak acid strong, but one can change the degree of dilution (or
concentration). Table 2.4 summarizes the principal difference between the degree
of strength and the degree of dilution. The basic idea behind this is also sketched
in Fig 2.2. For polyprotic acids, replace Ka by K1.

Table 2.4: Degree of strength vs degree of dilution.

degree of strength degree of dilution
determined by: acidity constant Ka amount of acid CT

relationships: weak acid ↔ strong acid dilute acid ↔ concentr. acid
small Ka ↔ large Ka small CT ↔ large CT

(positive pKa ↔ negative pKa

compares: two different acids dilution of the same acid
describes: release of H+ dilution of H+

type: fundamental property control parameter
(cannot be changed) (can be changed)

2.2 Basic Set of Equations

2.2.1 Special Case: Diprotic Acids (H2A)
Before turning to N -protic acids, let us start with the simple case of diprotic
acids (N = 2).
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0

pK

CT

dilute
weak acids

concentrated
weak acids

dilute
strong acids

concentrated
strong acids Figure 2.2: Weak/strong vs

dilute/concentrated acid.

When a diprotic acid H2A (the solute) is added to pure water (the solvent),
the equilibrium state of the solution is characterized by five dissolved species: H+,
OH–, H2A, HA–, and A–2 (see Fig 2.3). Thus, five equations are required for
its math description:

Kw = {H+} · {OH–} (self-ionization of H2O) (2.21)
K1 = {H+} · {HA–} / {H2A} (1st dissociation step) (2.22)
K2 = {H+} · {A–2} / {HA–} (2nd dissociation step) (2.23)
CT = [H2A] + [HA–] + [A–2] (mass balance) (2.24)
0 = [HA–] + 2 [A–2] + [OH–] − [H+] (charge balance) (2.25)

The first three equations are mass-action laws (of type (2.6)); the two last equations
represent the mass balance and the charge balance. While the mass-action laws
are based on activities (denoted by braces), the mass-balance and charge-balance
equations rely on molar concentrations (denoted by square brackets) — see Fig 2.4.

H2O

OH-

H+

H2O + H2A

H2A

HA-

A-2

OH-

H+

acid H2A

5
 sp

ecies

Figure 2.3: Addition of a diprotic
acid to water results in an
equilibrium state with five species.

Note. The total concentration of a diprotic acid is abbreviated by CT = [H2A]T.
This quantity should not be confused with the neutral dissolved species H2A(aq)
and its molar concentration [H2A].3

As summarized in Fig 2.5, the math description of the diprotic acid system is
based on two components (or subsystems) plus a coupling term:

3The dissolved but undissociated neutral species is sometimes also abbreviated as H2A0.
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14 2.2. Basic Set of Equations

Figure 2.4: Diprotic acid:
activity-based equations vs
concentration-based
equations. = [H+] – [OH-] – [HA-] – 2[A-2]0

= {H+} {OH-}Kw

= {H+} {HA-} / {H2A}K1

= {H+} {A-2} / {HA-}K2

mass balance

law of mass ac�on

charge balance

= [H2A] + [HA-] + [A-2]CT

based on 
ac�vi�es {..}

based on 
concentra�ons [..]

• component H2O (subsystem “pure water”) described by (2.21)
• component H2A (subsystem “acid”) described by (2.22) to (2.24)
• coupling of both subsystems described by (2.25)

The two subsystems are linked together by the charge-balance equation (2.25).

Figure 2.5: Diprotic-acid
system: The subsystem “H2O”
and the subsystem “acid” are
coupled by the charge-balance
equation.

= [H+] – [OH-] – [HA-] – 2[A-2]0

= {H+} {HA-} / {H2A}K1

= {H+} {A-2} / {HA-}K2

= [H2A] + [HA-] + [A-2]CT

= {H+} {OH-}Kw

pure H2O dipro�c acid

charge balance

2.2.2 General Case: Polyprotic Acids (HNA)
Given is an N -protic acid HNA. It is characterized by

N +3 species (variables): H+, OH–, HNA, HN–1A–, . . . , A–N︸ ︷︷ ︸
N +1 acid species

Hence, a complete math description requires a set of N +3 equations:

Kw = {H+} · {OH–} (self-ionization H2O) (2.26)
K1 = {H+} · {HN–1A–} / {HNA} (1st diss step) (2.27)
K2 = {H+} · {HN–2A–2} / {HN–1A–} (2nd diss step) (2.28)

...
KN = {H+} · {A–N} / {HA–(N–1)} (Nth diss step) (2.29)
CT = [HNA] + [HN–1A–] + . . . + [A–N] (mass balance) (2.30)

0 = [HN–1A–] + 2 [HN–2A–2] + . . . + N [A–N] + [OH–] − [H+] (2.31)
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2. Polyprotic Acids 15

Here the last equation represents the charge balance.
The math structure is analogous to that of diprotic acids in § 2.2.1. All mass-

action laws, i.e. the first N + 1 equations, are based on activities, {j}, while
the mass balance and charge balance, i.e. the last two equations, are based on
molar concentrations, [j].

This set of equations represents an exact description of the N -protic acid;
however, due to the presence of activities in the mass-action formulas (requiring
activity models as a prerequisite), this set of equations can only be solved numerically
(with the computer).

Preconditions for Analytical Formulas

In order to deduce closed-form expressions (i.e. analytical formulas), we have to
replace all activities by molar concentrations (except for H+):

{j} −→ [j]

This approximation is valid either in very dilute systems or by using conditional
equilibrium constants cK as introduced in (2.7). In the following we assume that
this has been done (without explicitly specifying it by cK in the notation). Thus
we have for the system of N +3 equations:

Kw = {H+} · [OH–] (self-ionization H2O) (2.32)
K1 = {H+} · [HN–1A–] / [HNA] (1st diss step) (2.33)
K2 = {H+} · [HN–2A–2] / [HN–1A–] (2nd diss step) (2.34)

...
KN = {H+} · [A–N] / [HA–(N–1)] (Nth diss step) (2.35)
CT = [HNA] + [HN–1A–] + . . . + [A–N] (mass balance) (2.36)

0 = [HN–1A–] + 2 [HN–2A–2] + . . . + N [A–N] + [OH–] − [H+] (2.37)

Comparing this to the set of equations (2.26) to (2.31), the mass and charge balance
(i.e. the last two equations) remain unchanged. And as for the rest of the equations,
you have to look closely to see the small but so fundamental change: the transition
from activities to concentrations (by changing the type of brackets).

The new set of equations is the basis for all subsequent investigations. As a
warm-up, the next paragraph starts with the subset of equations (2.33) to (2.36)
that defines the 1-component subsystem “acid”. It exhibits the math features
of the acid in its clearest form.
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Things will seem difficult when simple and simple
when difficult. The intelligent understand this and
maintain control through manipulation.

— Sun Tzu: The Art of War

3
1-Component System: “HNA”

Contents
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3.1 The Subsystem “Pure Acid”
This Chapter focuses on the 1-component system “acid” defined by the subset of
N +1 equations (2.33) to (2.36). In other words, we ignore the self-ionization of
water in (2.32) and the charge balance equation (2.37).

3.1.1 Streamlined Notation
Given is an N -protic acid HNA with the total amount (molar concentration)

CT ≡ [HNA]T = TOT HNA (3.1)

The N -protic acid is characterized by N +1 species:

1 undissociated species: HNA(aq) (electro-neutral)
N dissociated species: HN–1A–1, . . . , HA–(N–1), A–N (anionic)

To simplify the notation, we abbreviate the molar concentrations of the dis-
solved species with

[j] ≡ [HN–jA–j] for j = 0, 1, 2, . . . , N (3.2)

17



18 3.1. The Subsystem “Pure Acid”

The symbol j is an integer, which also indicates the negative charge of the species
(which is equal to the number of H+ released):

zj = 0 − j (3.3)

Thus, the species [0] stands for the uncharged, undissociated compound HNA(aq).
Note: This quantity should not be confused with the acid’s total amount, [HNA]T.

The sum of all species yields the total concentration CT :

mass balance: CT =
N∑

j=0

[j] = [0] + [1] + · · · + [N ] (3.4)

Dissociation Steps

In each successive dissociation step, j is enhanced by 1 (due to the release of one
H+ ion):

jth dissociation step: [j−1] −→ [j] (3.5)

where, according to (2.4), the conjugate acid-base pair is composed of:

acid: [j−1]
conjugate base: [j]

}
of the jth dissociation step (3.6)

Ionization Fractions

Instead of using the N+1 acid species [j], it is more convenient to work with ionization
fractions (as the ratio of the acid-species concentration to the total amount of acid):

aj ≡ [j]
CT

for j = 0, 1, 2, . . . , N (3.7)

3.1.2 Stepwise vs Cumulative Dissociation
As we know from § 2.1.3, a monoprotic acid is characterized by one acidity constant
K1 (= Ka), a diprotic acid by two acidity constants (K1, K2), and a triprotic acid
by three acidity constants (K1, K2, and K3):

1st dissociation step: H3A = H+ + H2A– K1 (3.8)
2nd dissociation step: H2A– = H+ + HA–2 K2 (3.9)
3rd dissociation step: HA–2 = H+ + A–3 K3 (3.10)

The three reactions can also be written as:

H3A = H+ + H2A– k1 = K1 (3.11)
H3A = 2 H+ + HA–2 k2 = K1K2 (3.12)
H3A = 3 H+ + A–3 k3 = K1K2K3 (3.13)

with kj as the cumulative acidity constants.
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3. 1-Component System: “HNA” 19

So we have two types of representation: The first representation describes the
step-by-step release of a single H+ in each dissociation step (it’s the way nature works);
the second relates each dissociated species to the undissociated acid by a “many-
proton” or cumulative release. The latter is a math trick to simplify calculations.

The second representation (in Table 3.1) requires a new set of mass-action laws
based on cumulative acidity constants k1, k2, to kN :

K1 = {H+} [HN–1A–] / [HNA]
K2 = {H+} [HN–2A–2] / [HN–1A–]

...
KN = {H+} [A–N] / [HA–(N–1)]

 ⇒

k1 = {H+} [HN–1A–] / [HNA]
k2 = {H+}2 [HN–2A–2] / [HNA]

...
kN = {H+}N [A–N] / [HNA]

which are products of K1, K2, and so on:

kj =
{

1 for j = 0
K1K2 · · · Kj for 1 ≤ j ≤ N

(3.14)

For values of j outside this range (i.e. either for negative j or for j > N), we set
kj = 0. In logarithmic form, using the definition pkj ≡ − lg kj, it becomes:

pkj =
{

1 for j = 0
pK1 + pK2 + · · · + pKj for 1 ≤ j ≤ N

(3.15)

This additive relationship is illustrated in Fig 3.1 for the triprotic acid, where the
pkj and pKj values are plotted along a Gibbs energy axis.

Table 3.1: Acid species and their cumulative acidity constants (in the new representation).

j species equilibrium reaction cumulative acidity constant

0 [0] ≡ [HNA] HNA = HNA k0 = [HNA]/[HNA] = 1
1 [1] ≡ [HN–1A–] HNA = H+ + HNA– k1 = {H+} [HN–1A–]/[HNA] = K1

2 [2] ≡ [HN–2A–2] HNA = 2 H++ HN–2A–2 k2 = {H+}2[HN–2A–2]/[HNA] = K1K2
...
N [N ] ≡ [A–N] HNA = NH+ + A–N kN = {H+}N [A–N]/[HNA] = K1K2 · · · KN

In contrast to the pkj values, which are arranged on the energy scale (like in
Fig 3.1), the pKj values can be arranged on a pH scale — see Fig 3.2 on page 25.

Note. The cumulative acidity constant kj should not be confused with the
cumulative equilibrium constant for complex formation denoted by βj (stability
constants). Acidity constants are dissociation constants, while complex-formation
constants are association constants. For more details see [1].
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20 3.1. The Subsystem “Pure Acid”

Figure 3.1: Relationship
between pk and pK values
of a triprotic acid on a
Gibbs-energy axis.

ΔG0 / (2.303 RT)

pk2 2H+ + HA-2

0 H3A

pk1 H+ + H2A-

pk3 3H+ + A-3

pK1

pK2

pK3

3.1.3 Generalized Henderson-Hasselbach Equations
The two representations (i.e. the stepwise and the cumulative dissociation introduced
in § 3.1.2) can be brought into a compact form (using x = {H+}):

reaction formula law-of-mass action

stepwise: HN–(j–1)A–(j–1) = H+ + HN–jA–j Kj = x [j]
[j−1] (3.16)

cumulative: HNA = jH+ + HN–jA–j kj = xj [j]
[0] = K1K2 · · · Kj (3.17)

Here, (3.16) represents the jth dissociation step characterized by Kj; these are N
reactions (where j runs from 1 to N). In (3.17), the number of reactions is N +1
(where j runs from 0 to N), including the trivial case HNA = HNA with k0 =1.

Eqs (3.16) and (3.17) provide the pH (or x) at particular concentration ratios:
[j]

[j−1] = Kj

x

[j] = [j−1]−−−−−−−−−→ x = Kj (3.18)

[j+1]
[j−1] = Kj

x

Kj+1

x

[j+1] = [j−1]−−−−−−−−−−→ x = (KjKj+1)1/2 (3.19)

[j]
[0] = kj

xj
= K1

x

K2

x
· · · Kj

x
(3.20)

Thus, once we know the concentration of one species, say [j], we are able to calculate
all other concentrations in turn, i.e. the equilibrium distribution of all species for a
given pH (or x). Under specific conditions (indicated by the arrows) the first two
equations define two types of equivalence points, which will be discussed in § 3.2.1.

In logarithmic form, the first two equations are generalizations of the Henderson-
Hasselbach formula introduced in (2.12):

pH = pKj + lg [j]
[j−1]

[j] = [j−1]−−−−−−−→ pH = pKj (3.21)

pH = pKj + pKj+1

2 + lg [j+1]
[j−1]

[j+1] = [j−1]−−−−−−−−→ pH = 1
2

(
pKj + pKj+1

)
(3.22)
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3.1.4 Closed-Form Expressions
Using (3.17), the subset of the N +1 equations (2.33) to (2.36) collapses to:

[j] =
(

kj

xj

)
[0] (N dissociation steps, j = 1 to N) (3.23)

CT =
N∑

j=0

[j] = [0]
N∑

j=0

kj

xj
(mass balance) (3.24)

As long as we consider the subsystem “acid” alone, CT itself is irrelevant.1 Dividing
both equations by CT , we obtain the ionization fractions defined by aj = [j]/CT :

aj =
(

kj

xj

)
a0 (3.25)

1 =
N∑

j=0

aj = a0

N∑
j=0

kj

xj
= a0

(
1 + k1

x
+ k2

x2 + · · · + kN

xN

)
(3.26)

The last equation provides a formula for a0 as a function of x (or pH):

a0 =
(

1 + k1

x
+ k2

x2 + · · · + kN

xN

)−1

(3.27)

=
(

1 + K1

x
+ K1K2

x2 + · · · + K1K2 · · · KN

xN

)−1

(3.28)

If a0 is known, all other ionization fractions aj can be calculated from (3.25). The
set of ionization fractions — i.e. the normalized acid-species distribution — contains
the complete information about the subsystem “acid”. The fascinating features of
the ionization fractions will be discussed and presented in § 3.3.

Summary

Given x (= 10−pH), the species distribution of the subsystem “acid” is completely
determined by the set of N +1 ionization fractions (for j = 0, 1, . . . , N):

aj =
(

kj

xj

)
a0 with a0 =

(
1 + k1

x
+ k2

x2 + · · · + kN

xN

)−1

(3.29)

3.1.5 Inverse Task
The inverse task is to calculate x or pH starting from a given a0 (or any other
aj). Unfortunately, the inverse task does not hold a simple equation in store for
us. On the contrary, it leads to a polynomial of high degree, namely of degree N
(as derived in Appendix B.1.1):

0 = const · xN−j

N∑
i ̸=j

ki xN−i with const = −
(

1 − aj

aj

)
kj (3.30)

1CT becomes relevant only if, in addition to HNA, H2O and/or other acids and bases are
present.
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If we move from the 1-component system “acid” to the 2-component system
“acid + H2O”, the degree of the polynomial increases to N + 2, as it will be
shown in (4.11) below.

Special Case: H2A

For a diprotic acid H2A, (3.30) becomes a quadratic equation (which can be
solved easily). Let’s assume we know the value of a0 and want to calculate the
corresponding x. The steps are as follows (note that k0 = 1):

0 = −
(

1 − a0

a0

)
x2 + K1x + K1K2 (3.31)

0 = x2 − α K1x − α K1K2 with α = a0

1 − a0
(3.32)

The positive root of this quadratic equation is

x = αK1

2

(
1 +

√
1 + 4

α

K2

K1

)
(3.33)

Usually K2/K1 ≪ 1 applies, so that the second term inside the square root
disappears. Then, for a0 = 1

2 (i.e. α =1) we obtain the simple result: x=K1.

3.2 Equivalence Points

3.2.1 Definition of Equivalence Points
An equivalence point (EP) is a special equilibrium state at which chemically
equivalent quantities of acid and base have been mixed:

equivalence point: [acid] = [base] (3.34)

This concept applies to any conjugate acid-base pair:

equivalence point: [acid] = [conjugate base] (3.35)

Thus, a polyprotic acid gives rise to a whole series of EPs, because — as we have
seen in (3.5) to (3.6) — each dissociation step (by releasing 1 proton) relates an
acid species to its conjugate base. Thereby, two types of equivalence points emerge:

EPj : [j−1] = [j+1] (3.36)
semi-EPj : [j−1] = [j] (3.37)

The definition of EPj applies for j =0 and j =N too, if we extend our notation
and identify [−1] by [H+] and [N +1] by [OH–]. Taken together, it yields:

EP0 : [H+] = [1] (for j = 0) (3.38)
EPj : [j−1] = [j+1] (for j = 1, 2, . . . , N) (3.39)
EPN : [N −1] = [OH–] (for j = N) (3.40)

and
semi-EPj : [j−1] = [j] (for j = 1, 2, . . . , N) (3.41)
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On the pH scale, each EP is the midpoint between two adjacent semi-EPs (as
shown later in § 3.2.2). The acid HNA has N +1 EPs (the same number as the
number of acid species) plus N semi-EPs. In total there are 2N +1 equivalence
points, called EPn, where n runs over all integer and half-integer values:

n = 0, 1
2 , 1, 3

2 , 2, . . . , N − 1
2 , N (3.42)

According to the equations (3.38) to (3.41), EPn is defined by

EPn ⇔

{
[n−1] = [n+1] for n = 0, 1, 2, . . . , N ⇔ EPj=n

[n− 1
2 ] = [n+ 1

2 ] for n = 1
2 , 3

2 , . . . , N − 1
2 ⇔ semi-EPj=n+1/2

(3.43)

Note 1. Comparing (3.36) and (3.37) based on j with (3.43) based on n, we
see that introducing n makes the equations more “symmetric”.

Note 2. The choice of the lowercase letter n as the subscript on EPn is not
accidental. The deep relationship between EPn and the variable n = CB/CT , where
CB is the amount of strong base, will be discussed in Chapter 5.

3.2.2 Assignment between EPn and pHn

The equivalence point as a special equilibrium state is characterized by a specific
pH value: EPn ⇔ pHn (or EPn ⇔ xn). This assignment can be easily established.
But before we start, it is useful to make a distinction between so-called external
and internal EPs, which separate the two outermost equivalence points EP0 and
EPN from the rest:

• external equivalence points EP0 and EPN (only two)
• internal equivalence points all other EPn (for 1

2 ≤ n ≤ N − 1
2)

Internal EPs

The internal equivalence points deliver particularly simple formulas. From (3.18)
and (3.19), or from (3.21) and (3.22), we obtain (valid for 0 < j < N):

semi-EPj : [j−1] = [j] ⇒ pH = pKj ⇔ x=Kj (3.44)
EPj : [j−1] = [j+1] ⇒ pH = 1

2

(
pKj + pKj+1

)
⇔ x=

√
KjKj+1 (3.45)

It gives the following sequence:

n = 1
2 : EP1/2 ⇔ pH1/2 = pK1 (3.46)

n = 1 : EP1 ⇔ pH1 = 1
2 (pK1 + pK2) (3.47)

n = 3
2 : EP3/2 ⇔ pH3/2 = pK2 (3.48)

n = 2 : EP2 ⇔ pH2 = 1
2 (pK2 + pK3) (3.49)

...
n = N − 1

2 : EPN–1/2 ⇔ pHN–1/2 = pKN (3.50)

Here the close relationship between equivalence points and pK values becomes
evident. Each acid’s pK value represents exactly one semi-EP (characterized by
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half-integer n). On the other hand, EPn with integer n are the midpoints between
two adjacent semi-EPs. It can be summarized as follows:2

pHn =
{

1
2 (pKn + pKn+1) for n = 1, 2, . . . , N −1 (EPj=n)
pKn+1/2 for n = 1

2 , 3
2 , . . . , N − 1

2 (semi-EPj=n+1/2)
(3.51)

Table 3.2 lists the internal EPs of four common acids, which are completely
determined by the acid’s pK values (no other information is necessary). In this
respect, they differ from external EPs which depend on the amount of acid, CT .

Table 3.2: Internal equivalence points of four acids (based on pK values in Table 2.2).

N acid pH1/2 pH1 pH3/2 pH2 pH5/2

1 acetic acid 4.76
2 (composite) carbonic acid 6.35 8.34 10.33
3 phosphoric acid 2.15 4.68 7.21 9.78 12.35
3 citric acid 3.13 3.94 4.76 5.58 6.4

External EPs

There are only two external equivalence points: EP0 and EPN. The formulas which
refer to H+ or OH– via (3.38) or (3.40) are a bit trickier than for the internal EPs.
From (3.23) to (3.27) follows:3

EP0 : [H+] = [1] ⇒ x = CT a1 ⇒ CT = x2

K1
· 1

a0(x) (3.52)

EPN : [N −1] = [OH–] ⇒ CT aN−1 = Kw

x
⇒ CT = KwKN

x2 · 1
aN(x) (3.53)

Here the pH values (or x) depend on the total amount of acid, CT . Unfortunately,
the equations on the right-hand side can only be offered as implicit functions
of x: CT =CT (x). [The inverse relationship, x=x(CT ), would require root-solving
of a high-degree polynomial.]

The only thing we can offer are values for the asymptotic case. As shown
later in (3.71) and (3.72), we have a0 = 1 for x → ∞ and aN = 1 for x → 0. The
last two equations then yield:

EP0 : approaching pH → 0 (or x → ∞) if CT → ∞ (3.54)
EPN : approaching pH → 14 (or x → 0) if CT → ∞ (3.55)

3.2.3 Summary & Examples
The same acidity constants (or pK values) that characterize the N -protic acid
represent the pH values of the internal equivalent points in the form of (3.43):

2The index j is always an integer; the index n is both integer and half-integer.
3For simplicity we set here x ≃ [H+], which deviates from our definition of x as {H+}.
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• EP with integer n (EP1, EP2, . . . , EPN–1) at pHn
• semi-EP with half-integer n (EP1/2, EP3/2, . . . , EPN–1/2) at pKn+1/2

In addition, there are two external, non-constant equivalence points located at
both ends of the pH scale when CT → ∞:

• EP0 : pH → 0
• EPN : pH → 14

On the pH scale, all equivalence points EPn (external and internal) are arranged
from left to right when n is increased stepwise as in (3.42):

pH0, pH1/2, pH1, pH3/2, . . . , pHN (3.56)
Such a sequence is shown schematically in Fig 3.2 for the triprotic acid H3PO4.

pK1 pK2

EP1/2 EP1

pK3
pH

EP5/2EP2EP3/2

(midpoint) (midpoint)

pH1 pH2

EP0 EP3

Figure 3.2:
Equivalence points
of a triprotic acid
H3A arranged on
the pH scale.

pH-CT Plots

Fig 3.3 shows all equivalence points of the carbonic acid (left diagram) and the
phosphoric acid (right diagram) in the pH-CT diagram. The internal equivalence
points (in red color) are independent of CT and therefore straight lines, the two
external EPs (blue and green curves) are not.

H2A (carbonic acid)
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C
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]

n=0 n=0.5 n=1.5n=1

n=2

n=0

n=0.5

n=1.5n=1 n=2

n=2.5

n=3

H3A (phosphoric acid)

Figure 3.3: pH dependence of EPs and semi-EPs for two acids plotted as CT = f(pH).
The curves are approximations valid for the subsystem “acid” (i.e. without coupling to
the subsystem “H2O”).

The representation as dashed curves (and not as solid lines) in Fig 3.3 reminds
us that these are approximations, valid for the isolated subsystem “acid” (i.e.
without coupling to the subsystem “H2O”). The general case will be discussed
later in § 5.4.2, where we learn that all internal EPs represent the large-CT limit
of the “HNA + H2O” system.
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26 3.3. Ionization Fractions: Degree of Dissociation

3.3 Ionization Fractions: Degree of Dissociation

3.3.1 Definition of aj

The N -protic acid HNA comprises N+1 species denoted by [j], where j runs from 0
to N . Instead of the molar concentrations [j] (which add up to the total amount
CT ), it is convenient to use unitless ionization fractions a0, a1 to aN :

aj ≡ [j]
CT

for j = 0, 1, 2, . . . N (3.57)

They form the math skeleton of the subsystem “acid” with its typical dependence
on x (or pH):4

aj =
(

kj

xj

)
a0 with a0 =

(
1 + k1

x
+ k2

x2 + · · · + kN

xN

)−1

(3.58)

Merging the left and right equations yields:

aj =
(

kj

xj

)
a0 = kj/xj∑N

j=0 kj/xj
for j = 0, 1, 2, . . . N (3.59)

The ionization fractions are solely functions of x (or pH = − lg x); the only other
ingredients are the cumulative equilibrium constants, introduced in (3.14):

k0 = 1, k1 = K1, k2 = K1K2, . . . , kN = K1K2 · · · KN (3.60)

Due to the definition in (3.57), the ionization fractions are independent of the
total concentration CT , which is useful in graphical presentations, as shown in
Fig 3.4. On the other hand, once we know aj, the molar concentration of the acid
species is obtained by multiplication with CT :

[j] = CT aj(x) for j = 0, 1, 2, . . . N (3.61)

To make the pH dependence of aj more apparent, (3.59) can be written as

aj(pH) = a0 kj · 10 j·pH = kj 10 j·pH∑N
j=0 kj 10 j·pH

(3.62)

The ionization fractions are the building blocks of all relevant quantities that we
will derive in the next chapters.

3.3.2 Bjerrum Plots & Special Features of aj

Bjerrum plots (dissociation diagrams) are a convenient way to visualize the pH
dependence of the ionization fractions aj. This is demonstrated in Fig 3.4 for four
acids (based on pK values taken from Table 2.2).

4It was derived in § 3.1.4, see (3.29).
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Figure 3.4: Bjerrum plots of ionization fractions for four acids (blue circles denote
semi-EPs).

Universality

Ionization fractions have the nice feature that they are independent of the acid’s
total amount CT . Regardless of the assumed CT (either constant or pH-dependent),
the shapes of the ionization-fractions remain the same — see examples in § 7.3
(H2A as titrant vs H2A as analyte) and § 7.4 (open vs closed CO2 system).

Mass Balance

For any chosen value of x (or pH) the sum of all ionization fractions equals 1:

1 = a0 + a1 + a2 + · · · + aN =
N∑

j=0

aj(x) (for any x or pH) (3.63)

Value Range

The ionization fractions are bound between 0 and 1:

0 < aj < 1 (for all j) (3.64)

They never become negative or greater than 1. [Strictly speaking: The functions
will come very close to the values 0 and 1, but they never really reach them.]
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Equivalence Points

The equivalence points introduced in (3.44) and (3.45) can also be defined by
equating two ionization fractions:

semi-EPj : [j−1] = [j] ⇐⇒ aj−1 = aj ⇒ x=Kj (3.65)
EPj : [j−1] = [j+1] ⇐⇒ aj−1 = aj+1 ⇒ x=

√
KjKj+1 (3.66)

This applies only for the internal equivalence points:

condition range pH n

semi-EPj aj−1 = aj j = 1, 2, . . . N pKj j− 1
2 (3.67)

EPj aj−1 = aj+1 j = 1, 2, . . . N −1 pHj = 1
2 (pKj + pKj+1) j (3.68)

Equivalence points are easily recognizable in the diagrams of Fig 3.4: The
semi-EPs are located at the intersection of two adjacent ionization fractions, aj−1
and aj (marked as blue circles); the EPs for integer n are at intersections of
ionization fractions aj−1 and aj+1 (marked as yellow circles). Notice that the
latter are located at the maximum of aj (whose mathematical verification is given
in (B.33) of Appendix B.3.2).

The actual values at the points of intersection are (cf. (B.35)):

semi-EPj aj = aj−1 ≃ 1
2 (all other aj ≃ 0) (3.69)

EPj aj = 1 − 2aj−1 ≃ 1 (all other aj ≃ 0) (3.70)

3.3.3 Two Types of aj: S-Shaped vs Bell-Shaped
The acidity constants in the form of pKj values subdivide the entire pH domain
into N +1 distinct intervals, as shown in Fig 3.5. The jth interval is the subdomain
in which the ionization fraction aj exercises its full dominance — see right diagrams
in Fig 3.5. As indicated by colors, there are two types of curves: (i) S-shaped
curves (sigmoid curves) in the 0-th and the N th interval at the opposite ends of the
pH scale (red color) and (ii) bell-shaped curves in all other intervals (blue color),
with their maxima in the middle of the interval.

Note 1. For N =1, the red curves a0 and a1 bear a striking similarity to logistic
functions or to the Fermi–Dirac distribution in statistical physics.

Note 2. The S-shaped curves appear as the two halves of a bell-shaped curve
when the opposite ends are glued together at ±∞.5

Table 3.3 contrasts the two types of ionization fractions. Their otherness
implies the distinction between external (outer) and internal (inner) equivalence
points (cf. § 3.2.2).

5For a mathematician this isn’t even as crazy as it seems (when acting on the complex Riemann
sphere, for example).
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Figure 3.5: Each ionization fraction aj has its own domain in the pH interval between
two adjacent pKj values. (HA – acetic acid, H2A – carbonic acid, H3A – phosphoric acid).

Asymptotic Behavior

At the opposite ends of the pH scale, the two ionization fractions a0 and aN

attain the maximum value 1:

strongly acidic: pH < 0 (or x → ∞) a0 = 1 all other aj = 0 (3.71)
strongly alkaline: pH > 14 (or x → 0) aN = 1 all other aj = 0 (3.72)

This behavior is an important fact to identify them as cumulative distribution
functions in [1]. [Note: The pH scale does not end at 0 or 14, but extends to pH < 0
and pH > 14 (in theory, even up to −∞ and to +∞).]

3.3.4 Two Types of Approximations
The formula for the ionization fractions in (3.58) can be approximated in two
radically different ways:

• approximation 1: “piecewise log-scale approximation” for lg aj

• approximation 2: “midpoint approximation” for aj
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Table 3.3: Two types of ionization fractions.

Type 1 (S-shaped) Type 2 (bell-shaped)

ionization fraction: a0 and an
a1, a2, ... aN−1
(does not exist for 1-protic acids)

domain (pH interval): pH < pK1 (for a0) pKj < pH < pKj+1pH > pKN (for aN )

maximum at pH: −∞ (for a0) 1
2 (pKj + pKj+1)+∞ (for aN )

strongly acidic (pH → 0): a0 =1, aN =0 aj =0
strongly alkaline (pH → 14): a0 =0, aN =1 aj =0

integral (area below curve): infinite finite

associated EPs: two external EPs: N −1 internal EPs:
EP0 and EPN EP1, EP2, ... EPN–1

Approximation 1

This approach focuses on the logarithm of aj (i.e., on lg aj instead of aj itself). It
is the approach that is used in textbooks as a graphical method for solving the
algebraic equations of equilibrium systems (in double-logarithmic diagrams).

The approximate formula for lg aj represents a sequence of linear function in pH:

lg aj ≃ (j − i) pH + (pki − pkj) for the ith interval (3.73)

where pki = pK1 + pK2 + ... + pKi and pk0 = 0. (For the derivation we refer to
Appendix B.2.1) Note: In the special case of j = i we get lg aj =0, that is aj =1.

Figure 3.6: Hägg’s diagram:
ionization fractions lg aj for
phosphoric acid based on the
piecewise approximation
in (3.73).
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Fig 3.6 shows the approximation for phosphoric acid (as a triprotic acid). There
are three pK values that subdivide the pH domain into four intervals. In each ith
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interval, lg aj represents a straight line with integer-valued slope (j−i) and offset
(pki − pkj). For example, for a2 (green dashed curve) we have:

lg a2 ≃ (2 − i) pH + (pki − pk2)

with the following segments (straight lines) in the ith intervals:

i = 0: (2 − 0) pH + (0 − pk2) = 2 pH − (pK1 + pK2) = 2 pH − 9.35
i = 1: (2 − 1) pH + (pk1 − pk2) = pH − pK2 = pH − 7.21
i = 2: (2 − 2) pH + (pk2 − pk2) = 0 = 0
i = 3: (2 − 3) pH + (pk3 − pk2) = −pH + pK3 = −pH + 12.35

Approximation 2

This approach is based on the fact that the curves in Fig 3.4 look so elementary
that one wonders whether these cannot be described by a much simpler formula.
And this is indeed so; one can replace the exact formulas in (3.58) by simpler ones:

a0 ≃
(

1 + K1

x

)−1

(3.74)

aj ≃
(

x

Kj

+ 1 + Kj+1

x

)−1

(for j = 1 to N) (3.75)

aN ≃
(

x

KN

+ 1
)−1

(3.76)

This approach relies on no more than two (adjacent) pK values; all other pK values
are ignored. In fact, for diprotic acids it just coincides with the exact formula,6
but for N -protic acids with N >2 it deviates slightly. The small deviations from
the exact description can only be recognized in logarithmic plots of aj — as shown
for phosphoric acid (N = 3) in Fig 3.76.
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 a3 Figure 3.7: Hägg’s diagram:
ionization fractions for
phosphoric acid. Solid lines —
exact description based on (3.58);
dashed lines — approximations
in (3.74) to (3.76).

6Of course, it also provides an exact solution for monoprotic acids (N =1), where a0 and a1
are given by (3.74) and (3.76).
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Summary

The two approaches are complementary, as demonstrated in Fig 3.8 (for phosphoric
acid). Approach 1 offers a very nice approximation in logarithmic plots, but fails to
reproduce the S-shaped and bell-shaped curves in pH-aj diagrams (dashed curves
in bottom-left diagram). Conversely, Approach 2 reproduces the aj curves perfectly,
but if we look more closely, we see deviations in the log-plots for values below
10−4 (dashed curves in the top-right diagram).
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Figure 3.8: Ionization fractions for phosphoric acid in the two approximations (dashed
lines). Solid lines: exact description based on (3.58).

3.4 Moments YL: Weighted Sums over aj

3.4.1 Definition of YL

The ionization fractions aj are the building blocks for the construction of so-called
moments. The Lthm̃oment YL is defined as the weighting sum over aj:

YL ≡
N∑

j=0

jL aj (3.77)

For L = 0 it represents the mass conservation (because 00 = 1):

Y0 = a0 + a1 + · · · + aN (for L = 0) (3.78)
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3. 1-Component System: “HNA” 33

For all other positive integers we have:

YL = a1 + 2La2 + 3La3 · · · + NLaN (for L ≥ 1) (3.79)

As indicated in Fig 3.9, the moments itself are the building blocks of a whole
series of relevant quantities: Y0 represents the mass balance; Y1 will turn out to be
the key quantity in the description of acid-base titration curves in § 5.3; Y2 and
Y3 will enter the buffer intensity and its derivative in § 6.2 (cf. equations (6.19)
and (6.20) on page 61).

moments YL
(sums over aj)

ioniza�on frac�ons

Y1 =  a1 + 2a2 + ... + NaN

Y0 =  a0 + a1 + ... + aN =  1

Y2 =  a1 + 4a2 + ... + N2aN

Y3 =  a1 + 8a2 + ... + N3aN

� mass balance

� �tra�on func�on

� buffer intensity β

� 1st deriva�ve of β

Figure 3.9: Moments YL as
building blocks for relevant
quantities that will be introduced
in equations (6.18) to (6.20) on
page 61.

The moments YL are non-negative functions, living in the range 0 < YL ≤ NL

(whereby the equals sign only applies to Y0, all other YL approach the upper
limit of NL asymptotically).

Fig 3.10 illustrates how the “titration curve” Y1 emerges from the set of (three)
ionization fractions aj (for phosphoric acid as a triprotic acid).

Fig 3.11 displays the pH dependence of Y1 to Y4 for four acids (with pK values
taken from Table 2.2). Note that for monoprotic acids (top-left diagram) all
moments are equal, i.e. the four YL-curves cover each other.

pH Dependence

The moments, just like the ionization fractions, are solely functions of x (or pH
= − lg x); the only other ingredients are the (cumulative) equilibrium constants
of the acid. From (3.59) we obtain:7

Y1(x) =
∑N

j=0 j · (kj/xj)∑N
j=0 (kj/xj)

=
∑N

j=0 j · kjx
N−j∑N

j=0 kjxN−j
(3.80)

Converting x to pH yields:

Y1(pH) =
∑N

j=0 j · kj 10 j·pH∑N
j=0 kj10 j·pH

(3.81)

7To obtain the last equation you should multiply both nominator and denominator by xN .
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Figure 3.10:
Construction of Y1 (blue
curve in bottom diagram)
from summation over three
weighted ionization
fraction aj . (Example:
phosphoric acid as a
triprotic acid).
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3.4.2 Moments and EPs
Internal EPs

For the equivalence points, the following simple relationships are obtained (see
(B.26) and (B.27) in Appendix B.3.1):
semi-EPj : pKj aj = aj−1 ≃ 1

2 YL = 1
2{(j−1)L+jL} (3.82)

EPj : pHj ≡ 1
2 (pKj+ pKj+1) aj = 1− 2aj−1 ≃ 1 YL ≃ jL (3.83)

This is valid only for the so-called internal equivalence points (j = 1 to N −1), and
for L ≥ 1. From these expressions the following special values are obtained:

YL at semi-EPj : YL at EPj :
YL(pK1) = 1

2 YL(pH1) = 1 (3.84)
YL(pK2) = 1

2 (1 + 2 L) YL(pH2) = 2 L (3.85)
YL(pK3) = 1

2 (2 L + 3 L) YL(pH3) = 3 L (3.86)
Y1(pKj) = j − 1

2 Y1(pHj) = j (3.87)
Y2(pKj) = (j−1) j + 1

2 Y2(pHj) = j2 (3.88)
The two relations in (3.87) can be combined into the remarkable formula valid for
all internal EPs and semi-EPs to a very good approximation (though not exactly):

Y1(pHn) − n = 0 for n = 1
2 , 1, . . . , N − 1

2 (3.89)
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Figure 3.11: pH dependence of Y1 to Y4 for four acids. In the case of monoprotic acids
(top-left diagram) all YL are equal; the four curves lie on top of each other.

In fact, it establishes the link between EPn and pHn defined in (3.51). A graphical
representation is provided by the small circles in Fig 3.12.
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Figure 3.12:
Moment Y1(pH) for
phosphoric acid. The
small circles (dots)
indicate the
relationship in (3.89).
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External EPs (Asymptotic Behavior)

The asymptotic behavior results from (3.71) and (3.72):

YL(pH → 0) = 0 or YL(x → ∞) = 0 (3.90)
YL(pH → 14) = NL or YL(x → 0) = NL (3.91)

In particular, for Y1 we get the asymptotic values 0 and 3 at the opposite ends
of the pH scale, as shown Fig 3.12. These values correspond to the two external
EPs (EP0 and EP3). In this case, (3.89) seems to be applicable even to external
EPs defined by the indices n = 0 and n = N .
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No one regards what is at his feet; we all
gaze at the stars.

— Quintus Ennius, 239-169 BC

4
2-Component System: “HNA + H2O”

Contents
4.1 Basic Set of Equations . . . . . . . . . . . . . . . . . . . 37
4.2 Closed-Form Equations . . . . . . . . . . . . . . . . . . . 38

4.1 Basic Set of Equations
In this Chapter we consider the coupled system “HNA + H2O”. The basic set of
N +3 equations, given in (2.32) to (2.37), becomes (after replacing the acid species
[j] by the ionization fractions aj = [j]/CT ):

Kw = x (x + w) (subsystem H2O) (4.1)
k1 = x (a1/a0) or a1 = (k1/x) a0 (HNA: 1st diss step) (4.2)
k2 = x (a2/a0) or a2 = (k2/x2) a0 (HNA: 2nd diss step) (4.3)
...
kN = x (aN/a0) or aN = (kN/xN) a0 (HNA: N th diss step) (4.4)
1 = a0 + a1 + a2 + · · · + aN (HNA: mass balance) (4.5)

0 = (a1 + 2a2 + · · · + NaN) + w/CT = Y1 + w

CT

(charge bal.) (4.6)

Subsystem H2O

The subsystem H2O with its two components H+ and OH– is expressed by x = {H+}
and w(x). The latter includes the self-ionization of water controlled by Kw:

w = [OH–] − [H+] ≃ Kw

x
− x (4.7)
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38 4.2. Closed-Form Equations

Subsystem HNA

The 1-component system “acid” (HNA) was introduced and discussed in Chapter 3.
The N -protic acid comprises N +1 acid species [j], which are described by the
subset of N +1 equations (4.2) to (4.5).

Coupling: HNA + H2O

Both subsystems are linked together by the charge-balance equation (4.6). The
schema in Fig 4.1 (for an N -protic acid HNA) is a generalization of Fig 2.5 (for
the diprotic acid H2A).

Figure 4.1: The two
subsystems “H2O” and “HNA”
are coupled via the
charge-balance equation.

= w/CT + Y10

= (k1/x) a0a1

= (k2/x2) a0a2

. . .

= (kN /xN) a0aN

= a0 + a1 + a2 + ... + aN1

= x (x + w)Kw

pure H2O N-pro�c acid

charge balance

N
+1

 eq
u

a�
o

n
s

4.2 Closed-Form Equations

4.2.1 Forward and Inverse Task
The 2-component system “HNA + H2O” is controlled by two “master variables”:
pH and the amount of acid CT , but only one of them can be freely chosen. Hence,
two tasks emerge:

• given pH ⇒ calculate CT

• given CT ⇒ calculate pH

}
and equilibrium speciation [j] = CT aj

Forward Task: CT = CT (pH)

For a given pH (or x=10−pH), CT and the composition of the equilibrium system
is obtained as follows:

pH (or x) ⇒ amount of acid: CT (x) = − w

Y1
with Y1 =

N∑
j=0

j aj(x) (4.8)

⇒ speciation (0≤j ≤N): [j] = CT (x) aj(x) =
(

− w

Y1

)
aj(x) (4.9)

Eq (4.8) represents an explicit function:

CT = f(pH) (4.10)
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4. 2-Component System: “HNA + H2O” 39

This dependence is displayed in the left diagram of Fig 4.2. [Note: Exactly the
same functions represent the pH dependence of the equivalence points EP0 plotted
as blue curves in the diagrams of Fig 5.10 on page 53.]
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Figure 4.2: Functional relationship between pH and the amount of acid CT . The left
diagram is based on (4.8); right diagram: same as left diagram, only axes interchanged.

Inverse Task: pH = pH(CT )

The inverse task to calculate the pH (or x) for a given CT is intricate because an
explicit function, such as pH = f(CT ), does not exist for N >1. The only thing we
can offer is an implicit function in the form of a polynomial1 of degree N +2:

0 =
N∑

j=0

{
x2 − j CT x − Kw

}
kj xN−j (4.11)

Compared to the polynomial for the 1-component system “HNA” in (3.30), this
polynomial is two degrees higher (N +2 rather than N), which makes the solution
more difficult. In principle, there is no algebraic expression for solving polynomials
with a degree higher than 4, no matter how hard we try. Thus, numerical root-
finding methods should be applied. The curves in the right diagram of Fig 4.2 were
plotted by a trick: Take the left diagram and interchange the axes.

Note. What is called here “forward task” and what is called “inverse task” is
arbitrary. In this case we call “forward task” the simpler calculation method.

4.2.2 Examples
Example N = 1 =⇒ Cubic Equation

The monoprotic acid represents the simplest case, where the sum in (4.11) runs
over two terms only, j =0 and 1. With k0 =1 and k1 =K1 we get a cubic equation:

0 = x3 + K1x
2 − (CT K1 + Kw) x − K1Kw (4.12)

1The derivation is presented in Appendix B.1.2 — see (B.8) for the special case n=0.
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40 4.2. Closed-Form Equations

Example N = 2 =⇒ Quartic Equation

For a diprotic acid, we get from (4.11) with k0 = 1, k1 = K1, and k2 = K1K2
a quartic equation:

0 = x4 + K1x
3 + (K1K2 − CT K1 − Kw) x2 − K1(2CT K2 + Kw) x − K1K2Kw

(4.13)

This equation can be found in textbooks, e.g. [2]. If you set K2 = 0, you
arrive at (4.12).
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The greatest, and most robust, contribution to
knowledge consists in removing what we think is
wrong.

— Nassim Nicholas Taleb

5
Acid-Base System

Contents
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 Basic Set of Equations . . . . . . . . . . . . . . . . . . . 44
5.3 Titration Curves . . . . . . . . . . . . . . . . . . . . . . . 48
5.4 Equivalence Points: General Approach . . . . . . . . . 50

5.1 Introduction

5.1.1 Definitions
The previous Chapter provided the algebraic description of the 2-component system
“HNA + H2O” (polyprotic acid in water). Starting from the set of equations (2.32)
to (2.37) we arrived at an analytical formula in (4.9) which predicts the amount
of CT for a given pH and vice versa.

A new degree of freedom comes into play when a strong base (or strong acid)
is added to this “undisturbed” system: the 2-component system becomes a 3-
component system. The term “strong” means complete dissociation in water:

strong mono-acidic base: BOH = B+ + OH– (5.1)
strong mono-protic acid: HA = H+ + A– (5.2)

Here the Arrhenius base BOH stands for NaOH or KOH (i.e. B+ = Na+ or K+)
while HX represents HCl, HI, or HBr (i.e. X– = Cl–, I–, or Br–).

The addition of a strong base or a strong acid (to the weak acid HNA) is known as:

alkalimetric titration: HNA + BOH =⇒ pH increases (5.3)
acidimetric titration: HNA + HX =⇒ pH decreases (5.4)
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42 5.1. Introduction

CB and CA denote the amounts of strong base and strong acid. They can be
related to the total amount of HNA by

nB = CB

CT

and nA = CA

CT

(5.5)

Since the strong base and strong acid act in opposing directions (both cancel each
other out), we combine the two equations into one

equivalent fraction: n = CB − CA

CT

(5.6)

where either CB or CA is zero. In this way, the equivalent fraction n of the titrant
is positive for the alkalimetric titration and negative for the acidimetric titration.1
Note that n = 0 represents the “undisturbed” system.

Example

Fig 5.1 provides the acid-base titration of the carbonate system with CT = 10 mM
H2CO3. The pure H2CO3 system is characterized by pH = 4.17 (at n=0). Larger
pH values are obtained through the addition of NaOH (n is positive); lower pH
values through the addition of HCl (n is negative). The small circles at the three
integer values n = 0, 1, and 2 indicate the equivalence points EP0, EP1, and EP2.

Figure 5.1: Titration
curve pH = pH(n) of
the carbonate system
(10 mM H2CO3).
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The same titration curve as in Fig 5.1 (valid for CT = 10 mM) is shown in
Fig 5.2 together with two additional curves for CT = 1 mM and 100 mM. The only
difference between the left and right diagrams in Fig 5.2 is that the x- and y-axes
are swapped. [The curves are calculated using (5.32) on page 46.]

5.1.2 Special Case: Diprotic Acid
Given is a diprotic acid H2A with amount CT to which a strong base BOH (with
B+ = Na+ or K+) is added:

H2A + nBOH = BnH2–nA + nH2O (5.7)

1In [2], the equivalent fractions n is abbreviated by f .
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Figure 5.2: Titration curves of the carbonate system (for 1, 10, and 100 mM H2CO3).
Left diagram: n = n(pH), right diagram: pH = pH(n).

Here n acts as a stoichiometric coefficient that embodies the ratio of the added strong
base to the amount of the diprotic acid: n=CB/CT as introduced in (5.5) and (5.6).

The entity BnH2–nA in the reaction formula (5.7) does not survive in water; it
dissociates into several aqueous species — as indicated in Fig 5.3.

specia�on
(in water)

6 aqueous species
in chem equilibrium

H2A + n BOH = BnH2-nA + nH2O

acid base

B+

H+

OH-

A-2

HA-

H2A

Figure 5.3: Alkalimetric titration of
a diprotic acid with a strong base.

The variation of n (or CB) in the reaction formula (5.7) by adding a strong base
is called alkalimetric titration. Because strong bases dissociate completely, we have:

CB ≡ [BOH]T = B+ (strong base) (5.8)

The special cases n = 0, 1, and 2 are of particular interest. When these three
integers are inserted into the reaction formula (5.7), the entity BnH2–nA becomes
a pure acid, an ampholyte and a (conjugate) base:

n = 0 : pure H2A solution (acid) ⇐⇒ H2A EP (5.9)
n = 1 : pure BHA solution (ampholyte) ⇐⇒ HA– EP (5.10)
n = 2 : pure B2A solution (base) ⇐⇒ A–2 EP (5.11)

In fact, n = 0, 1, and 2 define the three equivalence points (EP0, EP1, EP2) of a
diprotic acid — introduced in § 3.2.1 and discussed in § 7.2 below. [Example: For
“H2CO3 plus NaOH” we obtain pure solutions of H2CO3, NaHCO3 and Na2CO3.]
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Charge Balance

The principle of electro-neutrality requires that a solution must contain equal
numbers of anions and cations:

[H+] + [B+] = [HA–] + 2 [A–2] + [OH–] (5.12)

Replacing [B+] by CB, as stated in (5.8), we get

CB = [HA–] + 2 [A–2] + [OH–] − [H+] (5.13)

Base Equations

The set of algebraic equations to describe the alkalimetric titration of a diprotic acid
by a strong base generalizes the equations (2.21) to (2.25) introduced in § 2.2.1:

Kw = {H+} · {OH–} (self-ionization of H2O) (5.14)
K1 = {H+} · {HA–} / {H2A} (1st diss step) (5.15)
K2 = {H+} · {A–2} / {HA–} (2nd diss step) (5.16)
CT = [H2A] + [HA–] + [A–2] (mass balance) (5.17)
CB = [HA–] + 2 [A–2] + [OH–] − [H+] (charge balance) (5.18)

It differs from the original set by the last equation only, which is the charge
balance taken from (5.13). In fact, it is the sole equation into which the “strong
base” creeps into this set of equations; the other four equations in this set are
completely unrelated to CB. For CB = 0 the set reduces to the description of
the base-free diprotic-acid system.

Proton Balance

In textbooks, (5.18) is sometimes introduced through the concept of “proton balance”
— a special topic which is explained in Appendix C. For diprotic acids the proton
balance yields:

0 = [H+] + n[H2A] + (n − 1) [HA–] + (n − 2) [A–2] − [OH–] (5.19)

Using n = CB/CT and CT = [H2A] + [HA–] + [A–2], this formula converts to (5.18).

5.2 Basic Set of Equations

5.2.1 The 3-Component System
The acid-base system is made up of three components:

• pure water
• weak N -protic acid HNA

}
the “base-free” or “undisturbed” system
of Chapter 4

• strong mono-acidic base BOH
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It is characterized by

N + 4 species (variables):

“undisturbed system”︷ ︸︸ ︷
H+, OH–, HNA, HN–1A–, . . . , A–N︸ ︷︷ ︸

N +1 acid species

, B+

Instead of [B+] we use the parameter n = CB/CT . The description of acid-base
titrations is then built on a set of N +3 nonlinear equations:

Kw = {H+} · {OH–} (self-ionization of H2O) (5.20)
K1 = {H+} · {HN–1A–} / {HNA} (1st diss step) (5.21)
K2 = {H+} · {HN–2A–2} / {HN–1A–} (2nd diss step) (5.22)

...
KN = {H+} · {A–N} / {HA–(N–1)} (Nth diss step) (5.23)
CT = [HNA] + [HN–1A–] + . . . + [A–N] (mass balance) (5.24)
CB = [HN–1A–] + 2 [HN–2A–2] + . . . + N [A–N] + [OH–] − [H+] (5.25)

This set of equations is an extension of the diprotic-acid case in (5.14) to (5.18) from
N =2 to any large N . This is also an extension of the “undisturbed HNA system”
defined by the set of N+3 equations (2.26) to (2.31). The latter is re-established when
CB is set to zero (in the last equation). In fact, the only difference to the original
set of equations (2.26) to (2.31) is just the charge-balance equation in the last line.

Since we have N + 4 variables, but only N + 3 equations, the description is
given one degree of freedom: We can vary the parameter n to change the pH
(for a fixed value of CT ).

Two assumptions are necessary to derive closed-form expressions (one-line
formulas) from the set of equations (5.21) to (5.25):

• activities should be replaced by concentrations: {·} → [ · ]
• the strong base BOH dissolves completely without forming aqueous species

(such as NaCO –
3 or NaHCO3(aq))

The first assumption is fulfilled either in dilute systems or by switching to conditional
equilibrium constants cK introduced in (2.7). These are so-called “ideal conditions”;
counterexamples for “real conditions” will be given in § 7.6.

5.2.2 Closed-Form Expressions
The procedure for solving the set of algebraic equations (5.21) to (5.25) is the same
as that we used in previous paragraphs (cf. in § 4.2):

• replace activities by concentrations: {·} → [ · ] in (5.21) to (5.23)
• replace acid species [j] by ionization fractions aj in (5.21) to (5.25)
• replace {H+} by x and [OH–] by Kw/x−x, and use w(x) defined in (4.7)
• use the compact notation Y1 for the sums over aj in (5.25)
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In this way, the set of N + 3 equations simplifies to:

Kw = x (x + w) (subsystem H2O) (5.26)
k1 = x (a1/a0) or a1 = (k1/x) a0 (HNA: 1st diss step) (5.27)
k2 = x (a2/a0) or a2 = (k2/x2) a0 (HNA: 2nd diss step) (5.28)
...

kN = x (aN/a0) or aN = (kN/xN) a0 (HNA: N th diss step) (5.29)
1 = a0 + a1 + a2 + · · · + aN (HNA: mass balance) (5.30)
n = Y1 + w/CT (charge balance) (5.31)

This set of equations upgrades (4.1) to (4.6) from an acid system to an acid-base
system with the parameter n as the new ingredient.

The essence of the entire set of equations is contained in the closed-form
expression (taken from the last line):

n(x) = Y1(x) + w(x)
CT

(5.32)

The information contained in all other equations — i.e. equations (5.26) to (5.30)
— is encapsulated in the definition of Y1 and w:

YL =
N∑

j=0

j · aj = a1 + 2a2 + 3a3 + · · · + NaN (5.33)

w = [OH–] − [H+] ≃ Kw

x
− x (5.34)

In (5.32), each of the three terms represents one of the three components (sub-
systems): n — the strong base, w/CT — the water, and Y1 — the acid. This is
summarized in Fig 5.4, which illustrates how the three components “pure H2O”,
“N -protic acid”, and “strong base” are coupled via one single equation: the charge-
balance equation.

Figure 5.4: The acid-base
system: The three components
“H2O”, “acid”, and “strong
base” are coupled via the
charge-balance equation.

n  =  w/CT + Y1

pure H2O N-pro�c acid

charge 
balance

N
+1

 eq
u

a�
o

n
s

strong base

n = CB/CT

Kw = x (x+w) = (k1/x) a0a1

= (k2/x2) a0a2
. . .

= (kN/xN) a0aN

= a0 + a1 + a2 + ... + aN1

couples 3 components: 
H2O, HNA, BOH
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5.2.3 Polynomials for x = 10−pH

Eq (5.32) can be solved for x (or pH). This is done in Appendix B.1.2 with the
final result in (B.8), which is a polynomial of degree N +2 in x:

0 =
N∑

j=0

{
x2 + (n − j)CT x − Kw

}
kjx

N−j (5.35)

For n=0 it falls back to (4.11) on page 39. Theoretically, this equation can be used
to calculate x, but in practice it’s a difficult task, even for a cubic equation. For
higher-order polynomials, numerical root-finding methods should be used.

Example N = 1

The monoprotic acid represents the simplest case, where the sum in (5.35) runs
over two terms only, j =0 and 1. With k0 =1 and k1 =K1 we get a cubic equation,
i.e. a polynomial of degree 3 in x (= 10−pH):

0 = x3 + {K1 + nCT } x2 + {(n − 1) CT K1 − Kw} x − K1Kw (5.36)

which generalizes (4.12) for n ̸=0. It predicts x (or pH) for any given pair of CT

and n. Alternatively, replacing n by CB = nCT yields:

0 = x3 + {K1 + CB} x2 + {(CB − CT ) K1 − Kw} x − K1Kw (5.37)

Example N = 2

For a diprotic acid, we get from (5.35) with k0 = 1, k1 = K1, and k2 = K1K2
a quartic equation:

0 = x4 + {K1 + nCT } x3 + {K1K2 − (n − 1) CT K1 − Kw} x2

+ K1 {(n − 2) CT K2 + Kw} x − K1K2Kw (5.38)

which generalizes (4.13) for n ̸=0. It predicts x (or pH) for any given pair of CT

and n. Replacing n by CB = nCT yields:

0 = x4 + {K1 + CB} x3 + {K1K2 − (CB − CT ) K1 − Kw} x2

+ K1 {(CB − 2CT ) K2 + Kw} x − K1K2Kw (5.39)

Setting K2 =0, we arrive at (5.36) and (5.37). As will be shown later in § 8.1, in the
case of strong acids all polynomials simplify (their degree decreases by one unit).

Summary

Either the closed-form expression in (5.32) or the polynomial in (5.35) are self-
sufficient ways to describe the acid-base titration completely. Both are different en-
codings of one and the same thing, namely the set of N+3 equations (5.26) to (5.31).
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polypro�c acid HNA

K1 , K2 , ... KN

k0 =1, k1= K1 , k2= K1K2 , ...

aj(x) =

YL(x) =moments (sum of aj)

ioniza�on frac�ons

�tra�on curves buffer intensity β 1st deriva�ve of β

acidity constants

cumula�ve constants

H2O:  w = Kw/x – x

amount of acid CT

amount of base CB (�trant)

n = n(pH) dn/dpH d2n/dpH2

x = 10-pH

Figure 5.5: The analytical solution in (5.32) is constructed from acidity constants and
ionization fractions.

5.2.4 Lego-Set of Building Blocks
The analytical solution in (5.32) can be constructed “Lego-like” from building blocks
of increasing complexity (acidity constants Kj, ionization fractions aj, moments
YL). The hierarchy is sketched in Fig 5.5.

At the lowest level there are the N acidity constants K1 to KN (as irreducible
essence of acid HNA), which — after multiplication — form cumulative equilibrium
constants k1 to kN . These constants, in combination with the variable x = {H+},
enter the ionization fractions aj (which embody the law of mass action in each
dissociation step). Then, the ionization fractions are summed up to form the
moment Y1 as the central part of the final equation. The only other ingredient is
the quantity w(x) = Kw/x−x describing the self-ionization of water.

The usefulness of the higher moments YL (i.e. for L≥2) becomes clear later on,
when the moments are used as building blocks for other key quantities:

• Y0 ⇒ mass balance (Y0 = 1)
• Y1 ⇒ enters buffer capacity n(x) in (5.32)
• Y2 ⇒ enters buffer intensity β = dn/dx in (6.22)
• Y3 ⇒ enters 1st derivative of β in (6.23)

5.3 Titration Curves
The closed-form expression in (5.32) contains all the information about the acid-
base system. Plotting the equivalent fraction as a function of pH, i.e. n=n(pH),
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provides titration curves:

n = Y1(pH) + w(pH)
CT

CT → ∞−−−−−−−−→ n = Y1(pH) (5.40)

This formula for n consists of two parts: Y1(x) as the contribution from the
subsystem “acid” and w(x) as the contribution from the subsystem “H2O”. As
indicated by the arrow, the latter term vanishes for large CT values. In other words,
for high-concentrated acids the formula simplifies to n = Y1.

Example: Carbonic Acid

The upper diagram in Fig 5.6 shows the titration curve of carbonic acid in the
high-CT limit, where the simplified formula n(pH) = Y1 = a1 + 2a2 applies. The
corresponding ionization fractions aj — as the building blocks of Yj — are displayed
in the bottom diagram.

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

pH

 a0

 a1

 a2

 EP

 semi-EP

Y1 = a1 + 2 a2

H2A (carbonic acid)

pK1 pK2pH1

Figure 5.6: Titration curve
of carbonic acid in the
“high-CT limit”: Y1(pH) =
a1 + 2a2 (top diagram);
ionization fractions a0, a1, and
a2 (bottom diagram).

Fig 5.7 compares the titration curves in the “high-CT limit” (top diagram is
the same as in Fig 5.6) with the general case, n = Y1 + w/CT , for different values
of CT (bottom diagram). Here too, the dark blue curve represents Y1 as the
“high-CT limit”, i.e. CT /w ≫ 1.

Example: HA, H2A, H3A

Titration curves of four common acids for different values of CT (including the
high-CT case n(pH) = Y1 as a dark blue curve) are shown in Fig 5.8.
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Figure 5.7: Titration curves
of carbonic acid for different
CT values. Top diagram: the
“pure-acid” case: n(pH) = Y1
= a1 + 2a2; bottom diagram:
the “pure-acid” case
(CT → ∞) together with four
finite CT values.
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5.4 Equivalence Points: General Approach

5.4.1 Definitions
In § 3.2, equivalence points were introduced by equating two adjacent acid species [j]:2

EPj : [j−1] = [j+1] ⇔ EPn : [n−1] = [n+1] (for integer n=j) (5.41)
semi-EPj : [j−1] = [j] ⇔ EPn : [n − 1

2 ] = [n+ 1
2 ] (for half-integer n=j − 1

2)
(5.42)

This definition leads to simple formulas for the corresponding pH values (cf. § 3.2.2),
whereby the so-called internal EPs are directly related to the acidity constants Kj:

EPn ⇔ pHn =
{

1
2 (pKn+ pKn+1) for n = 1, 2, . . . , N −1 (EP)
pKn+1/2 for n = 1

2 , 3
2 , . . . , N − 1

2 (semi-EP)
(5.43)

General Approach

The general approach is based on the equality of two chemical compounds (and not
on the equality of two acid species as done in (5.41) and (5.42)):

EP: [N -protic acid]T = [strong base]T (5.44)

which can be written as

EP: CT = CB or n = CB

CT

= 1 (5.45)

2Here, the notation is extended to include the two external EPs by setting [-1] = [H+] and
[N+1] = [OH–].
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Figure 5.8: Titration curves of four common acids for different values of CT (including
the “pure-acid case” n(pH) = Y1).

This defines the equivalence point EP1. The extension to other EPs and semi-EPs
(for integer and half-integer n) is easy:

EPn : n = CB

CT

for n = 0, 1
2 , 1, 3

2 , ... N (5.46)

The math relationship between the EPn and the corresponding pHn value is provided
by the equivalence-fraction formula (5.32):

n = Y1(pH) + w(pH)
CT

for n = 0, 1
2 , 1, 3

2 , ... N (5.47)

Plotting it as a function of pH yields the blue titration curve in Fig 5.9 (for H2CO3
with CT = 100 mM). The small circles at integer and half-integer values of n mark
the assignment between EPn and pHn. Since H2CO3 is a 2-protic acid there are
2×2+1 = 5 equivalence points in total.

Asymptotic Behavior: CT → ∞

If CT increases steadily, the second term in (5.47) approaches zero and we get
the simple relationship:

EPn for CT → ∞ ⇐⇒ 0 = n − Y1(pHn) (“pure-acid case”) (5.48)
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Figure 5.9: Titration
curve of the diprotic acid
H2CO3 based on (5.47)
with EPs and semi-EPs
located at integer and
half-integer values of n.
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In fact, according to (3.89), it offers the intimate relationship between the pH of
an internal equivalence point and the acidity constants, as stated in (5.43).3 In
other words, the “pure-acid case” from § 3.2 is immanent in (5.47) and comes to
light when the “coupling term” w/CT disappears.

5.4.2 EPn as Trajectories in pH-CT Diagrams
Eq (5.47) can be rearranged into the form

CT = w(pHn)
n − Y1(pHn)

(5.49)

Now it is possible to plot all EPn as distinct curves into a pH-CT diagram (one
curve for one integer or half-inter value of n). This is done in Fig 5.10 for four acids.
The dashed curves and lines are approximations corresponding to the high-CT

limit as displayed in Fig 3.3 on page 25.
Let’s explain the general behavior of the EPn curves using the phosphoric

acid (as a triprotic acid). This example is shown in Fig 5.11 and consists of two
diagrams. In the top diagram, we have the two uncoupled (isolated) subsystems
located at opposite ends of the CT scale:

• subsystem “acid”: CT → ∞
• subsystem “H2O”: CT → 0

The bottom diagram in Fig 5.11 shows the situation in which both subsystems
are coupled. Starting at pH 7, the curves fan out when CT increases until
they fit the “pure-acid” values at the top of the chart. The whole behavior is
determined by (5.49).

The subsystem “H2O” overtakes the rule when CT drops below 10−7 M, which
is just the amount of H+ and OH– in pure water.

The two extremes (i.e. the two isolated subsystems) can be deduced from
Eq (5.49) by setting either the nominator or the denominator to zero:

CT = w

n − Y1
⇐⇒

{
w = 0 ⇒ CT = 0
n − Y1 = 0 ⇒ CT → ∞ (5.50)

3Eq (5.48) is more general than (5.43) . Both equations are equivalent for N ≤ 2, but deviate
for higher N (albeit the deviation is very small).
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Figure 5.10: pH dependence of EPs and semi-EPs plotted as CT = f(pH) for four acids.

In math jargon, the corresponding pH values of the “pure acid” system (listed in
Tab 3.2) are the poles (or singularities) of (5.49) or (5.50). On the other hand,
the single EP of “pure H2O” is at the position where the nominator in (5.49) or
(5.50) becomes zero (which is exactly at pH = 7):

EP of H2O ⇐⇒ 0 = w(x) ⇐⇒ CT = 0 (5.51)

5.4.3 Summary: Systematics & Classification
First. Equivalence points are “special equilibrium states” in which the equivalent
fraction n = CB/CT becomes an integer or half-integer value. An N -protic acid
has a total of 2N +1 equivalence points:

EPn : CB/CT = n for n = 1, 2, ... N (5.52)
semi-EPn : CB/CT = n for n = 1

2 , 3
2 , ...

(
N − 1

2

)
(5.53)

The trivial case EP0 refers to the base-free system with pH0 as the pH value of
the acid with amount CT dissolved in water.

Second. Each EPn is characterized by a specific pH value, which we call pHn. The
algebraic relationship EPn ⇔ pHn is given by n = Y1(pH) + w(pH)/CT , i.e. (5.47),
where Y1 describes the acid and w the water.

Third. The equivalent fraction n = Y1(pH)+w(pH)/CT (titration curve) represents
the buffer capacity, as it will be shown later in Chapter 6. Its first pH-derivative is
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Figure 5.11: pH dependence
of EPs and semi-EPs of
phosphoric acid (H3PO4) for
the uncoupled (top diagram)
and the coupled system
(bottom diagram).
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the buffer intensity β = dn/dpH. The EPs are the extreme points of β:

EPn integer n ⇐⇒ minimum buffer intensity β

semi-EPn half-integer n ⇐⇒ maximum buffer intensity β

Fourth. In the limiting case of high-concentrated acids (CT → ∞), the general
relationship simplifies to:

Y1(pH) − n = 0 (5.54)

This equation asserts the direct link between pHn and the acidity constants:4

pHn = 1
2 (pKn+ pKn+1) for integer n (EPn)

pHn = pKn+1/2 for half-integer n (semi-EPn)

These simple relationships are applicable for CT >10−3 M, but fail in very dilute acids
when the influence of the water becomes dominant (and the general formula (5.47)
must be used instead of (5.54)).

Fifth. An alternative definition of EPs is based on the equality of the concentrations
of the species, as done in (5.41) and (5.42), and originally established in § 3.2.1. This
definition is an approximation which, strictly speaking, only applies to the high-CT

4It is strictly valid for diprotic acids, but remains a very good approximation for N -protic
acids with N ≥ 3.
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case. (Nonetheless, in carbonate systems, for example, EP1 is often introduced as
the equilibrium state for which [CO2] = [CO –2

3 ] applies.)
Table 5.1 compares the two approaches to equivalence points. The left column

summarizes the alternative definition based on the equality of species concentrations
(as introduced in § 3.2.1 for the simplified “pure acid” case). This is in sharp
contrast to the general approach (right column in Table 5.1) where real chemical
compounds are set equal.

Table 5.1: Comparison of two approaches to equivalence points.

1-component system

( HNA alone )

3-component system

( HNA + H2O + strong base )

common, but approximate

d
efi

n
i�

o
n based on acid species

EPn:      [n-1] = [n+1]

semi-EPn: [n-½] = [n+½]

o
u

tc
o

m
e

½ (pKn + pKn+1)  � EP

pKn+1/2    � semi-EP
pHn =

CT ��

(n  ̶  Y1 = 0)

n

based on total amount of 
compounds

EPn:     n  =                             =   
[HNA]T

[strong base]T

CT

CB

general and strict

Sixth. The concept was extended to zwitterionic acids in [1] (where (5.47) will
become (4.7) in [1]). This provides a new perspective on Table 5.1: The simplified
approach in the left column is related to isoelectric points (i.e. points that only
exist for zwitterions, but not for common acids), while the approach in the right
column refers to isoionic points.
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Perfect is the enemy of Good Enough.

"Good for everything" is the same as
"particularly good at nothing".

— two proverbs

6
Buffer Capacities
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6.1 ANC and BNC

6.1.1 EPs as Reference Points of ANC and BNC
The starting-point is the acid-base system of Chapter 5. An equilibrium state of
the acid–base system with a given amount of CT is completely specified by the
parameter CB or n=CB/CT . The main relationship is presented by (5.32) in § 5.2.2.

Buffer capacities are distances between two equilibrium states, expressed as
the deviation from a reference point:

∆n = n − nref or ∆CB = CB − nref CT (6.1)

The reference point is usually an equivalence point EPn=j (with integer j). Thus
we can set nref = j and write:

∆n = n(x) − j or ∆CB = CB − j · CT (with j = 0, 1, ...) (6.2)

If nref =0, the equations collapse to ∆n=n and ∆CB =CB. This legitimizes calling
n and CB buffer capacities; they measure the distance to EP0.

Two types of buffer capacities are in common use: the acid-neutralizing capacity
(ANC) and the base-neutralizing capacity (BNC). The ANC is the amount of
basicity of the system that can be titrated with a strong acid to a chosen equivalence
point EPj (at pHj):

[ANC]n=j = CB(pH) − j · CT (6.3)
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The small subscript n in the symbol [ANC]n refers to the chosen reference point,
usually EPn (with an integer n). In the special case of n=0, which corresponds to
the base-free 2-component system, the last term vanishes and the ANC becomes

[ANC]0 = CB(pH) (6.4)

The BNC is the exact opposite of ANC:

[BNC]n = −[ANC]n (6.5)

The definition in (6.3) leads to a simple formula for ANC. Using (5.32) for
CB(pH) = n CT yields:

[ANC]n=j = {Y1(x) − j } CT + w(x) (6.6)

For example, the amount of strong acid (say HCl) required to neutralize the system
from startpoint x (= 10−pH) to a particular EPn (titration endpoint) is:

[ANC]0 = {Y1(x) − 0 } CT + w(x) = {Y1(x)CT + w(x)} − 0 · CT (6.7)
[ANC]1 = {Y1(x) − 1 } CT + w(x) = {Y1(x)CT + w(x)} − 1 · CT (6.8)
[ANC]2 = {Y1(x) − 2 } CT + w(x) = {Y1(x)CT + w(x)} − 2 · CT (6.9)

The three ANC curves are shown in the top diagram of Fig 6.1 for carbonic acid
(CT = 10 mM). The small circles at pH0 = 4.2, pH1 = 8.2, and pH2 = 11.1 mark
the corresponding EPn. The curves display the amount of strong acid (normalized
by CT ) required to remove the inherent basicity and to attain pH0 (blue curve),
pH1 (green curve), and pH2 (red curve). Of course, the highest amount (blue curve)
is required to attain the lowest pH, namely pH0 = 4.2.

Negative ANC values indicate that the system’s acidity should be removed to
attain the EPn (which is the same as the addition of a strong base — see (6.5)
for BNC). Curves of BNC are shown in the bottom diagram of Fig 6.1, which
is the mirror image of the top diagram.

6.1.2 Titration Example
Given is a carbonic-acid system with CT =10 mM. The titration curve — based
on (5.32) — is displayed in Fig 6.2. The three EPs for n = 0, 1, 2 are marked by
small yellow circles at pH0 = 4.2, pH1 = 8.2, and pH2 = 11.1.

Let’s select two points on the titration curve as displayed in Fig 6.2:
• point A at pH = 11.7 (belongs to equivalent fraction n(pH) = 5/2)
• point B at pH = 2.3 (belongs to equivalent fraction n(pH) = -1/2)

These two points (located on the opposite corners of the diagram) should be
the starting points for the two types of titration:

• acidimetric titration with strong acid from A at pH = 11.2 ⇒ pHn

• alkalimetric titration with strong base from B at pH = 2.3 ⇒ pHn
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Figure 6.1: Normalized
[ANC]n and [BNC]n for
carbonic acid with CT =
10 mM.

ANC. The required amount of strong acid (indicated by the green arrows in
Fig 6.2) to attain EP1, EP2 and EP3 is just the acid-neutralizing capacity given
in equations (6.7) to (6.9):

[ANC]0 = {5/2 − 0} · CT = 25 mM (6.10)
[ANC]1 = {5/2 − 1} · CT = 15 mM (6.11)
[ANC]2 = {5/2 − 2} · CT = 5 mM (6.12)

BNC. The required amount of strong base (indicated by the red arrows in Fig 6.2)
to attain EP1, EP2 and EP3 is just the base-neutralizing capacity given in equa-
tions (6.7) to (6.9):

[BNC]0 = {-1/2 − 0} · CT = 5 mM (6.13)
[BNC]1 = {-1/2 − 1} · CT = 15 mM (6.14)
[BNC]2 = {-1/2 − 2} · CT = 25 mM (6.15)

The addition of a strong base is equivalent to the removal of a strong acid
and vice versa.

6.1.3 Alkalinity and Acidity
In carbonate systems, ANC is known as alkalinity and BNC as acidity. Again, we
have to distinguish between different types of alkalinity and acidity depending on
the reference point EPn chosen. The carbonic acid has three integer-valued EPs;
hence there are three types of alkalinity (cf. Fig 6.3):
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Figure 6.2:
Titration curve for
carbonic acid with
[ANC] and [BNC]
values. CB [mM]

pK1

pK2

H2A (carbonic acid) CT = 10 mM
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A

total alkalinity (M alkalinity): [Alk] = [ANC]n 0
P alkalinity: [P-Alk] = [ANC]n 1
caustic alkalinity: [OH-Alk] = [ANC]n 2

Correspondingly, there are three types of acidity:
mineral acidity: [H-Acy] = [BNC]n 0
CO2 acidity: [CO2-Acy] = [BNC]n 1
acidity: [Acy] = [BNC]n 2

Figure 6.3: Titration
curve n=n(pH) for
carbonic acid (CT =
10 mM) with equivalence
points and the
corresponding types of
alkalinity and acidity.
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Alkalinity and acidity are complementary. From (6.5) we get:

[ANC]0 = – [BNC]0 =⇒ [Alk] = – [H-Acy]
[ANC]1 = – [BNC]1 =⇒ [P-Alk] = – [CO2-Acy]
[ANC]2 = – [BNC]2 =⇒ [OH-Alk] = – [Acy]

Version: December 17, 2023



6. Buffer Capacities 61

Of all three types of alkalinity, total alkalinity is the most important; it is given by

[Alk] ≡ [ANC]0 = CB = n CT (6.16)

Using (6.6), the difference between total alkalinity (M-alkalinity) and P-alkalinity
yields the amount of CT as follows:

[Alk] − [P-Alk] = [ANC]0 − [ANC]1 = CT (= DIC) (6.17)

In carbonate systems, this is just the molar concentration of dissolved inorganic
carbon (DIC).

6.1.4 pH as Reference Point of ANC and BNC
In § 6.1.1, ANC and BNC have been defined with respect to an equivalence point
EPn. ANC and BNC can also be defined with respect to a particular pH value
(which can be any chosen value). In practice it is common to use the pH of the
equivalence points EP0 and EP1 of the carbonate system:

EP0: pH = 4.3
EP1: pH = 8.2

The two EPs are shown as yellow dots in Fig 6.3. The usefulness of this choice
is that these are the pH values of common indicators: indicator methylorange
(titration endpoint 4.2 to 4.5) and indicator phenolphthalein (titration endpoint
8.2 to 8.3). The measured amount of strong acid or strong base to reach these
endpoints are called:

ANC to pH 4.3: [ANC] pH 4.3 ≃ [Alk]
ANC to pH 8.2: [ANC] pH 8.2 ≃ [P-Alk]
BNC to pH 4.3: [BNC] pH 4.3 ≃ − [Alk]
BNC to pH 8.2: [BNC] pH 8.2 ≃ − [P-Alk]

The measured “ANC to pH 4.3” corresponds to the total alkalinity (or M-alkalinity)
of the system; the measured “ANC to pH 8.2” to the P-alkalinity. The abbreviation
“M” refers to the indicator methylorange and “P” to phenolphthalein.

6.2 Buffer Intensity

6.2.1 From Buffer Capacity to Buffer Intensity
Let us start with the normalized buffer capacity in (6.2). Using (5.32) yields:

normalized buffer capacity: ∆n(pH) = { Y1(pH) − j } + w(pH)
CT

(6.18)

The derivative with respect to pH gives:

normalized buffer intensity: β ≡ d ∆n

d pH = dn

d pH (unitless) (6.19)

buffer intensity: βC ≡ dCB

d pH = β CB (in mM) (6.20)
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[Note: The last equation is valid if CT = const (standard case), otherwise we have
to use dCB/dpH = βCT + n (dCT /dpH).]

The acid-neutralizing capacity is re-established by integrating βC over a definite
pH interval (usually starting from an equivalence point EPn):

[ANC]n =
∫ pH

pHn

βC(p̃H) d p̃H (6.21)

To perform the 1st and 2nd pH derivative of (6.18) we apply the formulas
in Appendix B.4, in particular (B.40) and (B.41) for w(pH) as well as (B.50)
and (B.53) for Y1(pH). We get:

norm. buffer intensity: β(x) ≡ dn

d pH = (ln 10)
(

Y2 − Y 2
1 + w + 2x

CT

)
(6.22)

1st derivative of β: dβ

d pH = (ln 10)2
(

Y3 − 3Y1Y2 + 2Y 3
1 + w

CT

)
(6.23)

Fig 6.4 displays the titration curve (blue) together with the buffer intensity β
(green) and its 1st derivative (red) for the H2CO3 system with CT = 100 mM. The
calculations are performed using equations (6.18), (6.22), and (6.23). The small
circles indicate the EPs and semi-EPs. The EPs are the extremum points of β:

EPn: (integer n) ⇔ minimum buffer intensity β

semi-EPj: (half-integer n) ⇔ maximum buffer intensity β

Figure 6.4: Optimal
buffer range of the
H2CO3 system with CT

= 100 mM.
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A good pH buffer should mitigate pH changes when the system is attacked by a
strong base or strong acid. It means that the pH change, ∆pH, should be small when
n=CB/CT changes by ∆n. In other words, the slope of the titration curve in Fig 6.4,
∆n/∆pH, should be large for maximum buffering capability. The buffer intensity,
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β = dn/dpH, is just the measure of this slope. Thus, the pH at the point where β
reaches its maximum signals the optimal buffer range (bounded by pHmax±1).

More examples are given in Fig 6.5 and Fig 6.7. Since each titration curve
(blue) is an ever-increasing function, its pH derivative, i.e. the buffer intensity β,
is always positive (green curves).
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Figure 6.5: Normalized buffer capacity (blue), buffer intensity (green), and dβ/dpH
(red) for four acids and CT → ∞ (i.e. CT /w ≫ 1). Maxima and minima of the buffer
intensity β (green) are located at zeros of dβ/dpH (small circles on red curves).

6.2.2 Minima and Maxima (High-CT Limit)
Equations (6.18), (6.22) and (6.23) simplify for large values of CT (“high-CT limit”),
where the last term in the above equations (containing CT in the denominator)
vanish. Hence, for CT ≫ w we have:

norm. buffer capacity: ∆n(pH) = Y1(pH) − j (6.24)
norm. buffer intensity: β(pH) = (ln 10)

(
Y2 − Y 2

1
)

(6.25)

1st derivative of β: dβ

d pH = (ln 10)2 (Y3 − 3Y1Y2 + 2Y 3
1
)

(6.26)

These are smooth functions made of Y1, Y2, and Y3 alone. The behavior of YL is
entirely determined by the set of the acid’s equilibrium constants Kj , or alternatively,
by the internal equivalence points EPn as given in (3.82) and (3.83):

semi-EPj at pKj : YL = 1
2{(j−1)L+jL} (n = j− 1

2) (6.27)
EPj at pHj ≡ 1

2 (pKj+ pKj+1) : YL ≃ jL (n = j) (6.28)
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Inserting it into (6.25) yields

β(pKj)
ln 10 = Y2(pKj) − Y 2

1 (pKj) = {j(j−1) + 1
2} − {j(j−1) + 1

4} = 1
4 (6.29)

β(pHj)
ln 10 = Y2(pHj) − Y 2

1 (pHj) = j2 − j2 = 0 (6.30)

Now, we prove that these equivalence points are extremum points of the buffer
intensity. In math, the maximum or minimum is known to be the point at which
the slope (i.e. the derivative) of a function becomes zero. Hence, local maxima and
minima of the buffer intensity β(pH) occur at pH values where dβ/dpH = 0. The
derivative itself is given in (6.26), where we focus on Y3 − 3Y1Y2 + 2Y 3

1 .
For the semi-EPn with half-integer n = j− 1

2 , we get from (6.27):

Y3 − 3Y1Y2 + 2Y 3
1 = 1

2{(j−1)3 + j3} − 3(j− 1
2){j(j−1) + 1

2} + 2(j− 1
2)3

= 0 at pH = pKj for j = 1, 2, ...N (6.31)

For the EPn with integer n = j, we get from (6.28):

Y3 − 3Y1Y2 + 2Y 3
1 = j3 − 3j j2 + 2j3

= 0 at pH = pHj for j = 1, 2, ...N −1 (6.32)

Hence, the zeros of dβ/dpH occur exactly at the internal equivalence points EPn for
both integer and half-integer n. To decide whether the zeros indicate a maximum
or minimum, we need the next higher derivative d2β/dpH2 (or d3Y1/dpH3, which
is presented in (B.54) in Appendix B.4.3.

Summary

The following assignment is valid for CT /w ≫ 1:

semi-EPj at pKj ⇐⇒ maximum of β ( d3Y1/dpH3|pKj < 0 ) (6.33)
EPj at pHj ⇐⇒ minimum of β ( d3Y1/dpH3|pHj > 0 ) (6.34)

The buffer intensity attains its maximum at semi-equivalence points located at pKj.
The actual values of β at this extrema were already presented in (6.29) and (6.30):

maxima of β at semi-EPj : βmax = ln 10
4 ≃ 0.576 for half-integer n (6.35)

minima of β at EPj : βmin = 0 for n = 1, 2, ...N −1 (6.36)

This behavior of the buffer intensity is illustrated in Fig 6.5 for four acids. The
maxima of β (green curve) are indicated by the corresponding pKj values, where
the zeros of dβ/dpH (red curve) are marked by small blue dots.

Example: Carbonate System

The carbonate system, as shown in the bottom-left diagram of Fig 6.5, has two
semi-EPs. Hence, there are two maxima of the buffer intensity (green curve) located
at pK1 = 6.35 and pK2 =10.33, while the minimum of β is located at pH1 =
1
2 (pKj+pKj+1) = 8.34 (which is an integer-valued EP).
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6.2.3 The General Case
§ 6.2.2 was focused on large values of CT (≫ w). Now, the more realistic case
of small CT values considers the effect of the autoprotolysis of H2Othrough the
last term in (6.18), (6.22) and (6.23). The results are displayed in diagrams,
each containing three curves:

• n(pH) buffer capacity Eq (6.18) (blue curve)
• β = dn/dpH buffer intensity Eq (6.22) (green curve)
• dβ/dpH 1st derivative of β Eq (6.23) (red curve)

All three quantities are unitless. The small blue circles mark the zeros of dβ/dpH,
which correspond to the minima and maxima of the buffer intensity β.

Example: Carbonate System

Given is the carbonic acid system with CT = 100 mM, 10 mM, and 1 mM H2CO3;
the results are shown in Fig 6.6.

Figure 6.6: Titration curve n(pH),
buffer intensity β, and dβ/dpH for
three CT values of the carbonate
system.
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Example: Four Common Acids

Fig 6.7 to Fig 6.9 displays the results for four common acids with an amount of
CT = 100 mM, 10 mM, and 1 mM. These results should be compared with the
curves for the case CT → ∞ in Fig 6.5 on page 63.

pK1 pK2 pK2

pK2 pK3pK1
HA (ace�c acid)

H2A (carbonic acid) H3A (phosphoric acid)

H3A (citric acid)

pHpH

CT = 100 mM
pK1

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

1 2 3 4 5 6 7 8 9 10 11 12 13

 n = Y1 + w/CT

β = dn/dpH

dβ/dpH

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

1 2 3 4 5 6 7 8 9 10 11 12 13

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 6.7: Titration curve (blue), buffer intensity (green), and dβ/dpH (red) for four
common acids with CT = 100 mM.
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Figure 6.8: Titration curve (blue), buffer intensity (green), and dβ/dpH (red) for four
common acids with CT = 10 mM.

Figure 6.9: Titration curve (blue), buffer intensity (green), and dβ/dpH (red) for four
common acids with CT = 1 mM.
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The archer who overshoots the target misses
as much as the one who does not reach it.

— Montaigne

7
Application: Carbonate System
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7.1 Relationships between pH, CT , and Alkalinity
The actual equilibrium state of a diprotic acid H2A (i.e. the concentrations of the
three aqueous species [j]: H2A, HA–, and A–2) is completely controlled by two
parameters chosen from the triple (CT , n, pH) or (CT , CB, pH), where CB =n CT =
Alk (see (6.16)). Once we know two of them, the third is inevitably fixed:

pH(CT , n) = − lg xn with xn as positive root of (5.38), [j] = CT aj (7.1)
pH(CT , Alk) = − lg xn with xn as positive root of (5.39), [j] = CT aj (7.2)

n(CT , pH) = a1 + 2a2 + w/CT , [j] = CT aj (7.3)
Alk(CT , pH) = CT (a1 + 2a2) + w , [j] = CT aj (7.4)

CT (n, pH) = w/(n − a1 − 2a2) , [j] = (w/(n − a1 − 2a2)) aj (7.5)
CT (Alk, pH) = (Alk − w)/(a1 + 2a2) , [j] = (Alk − w)/(a1 + 2a2) aj (7.6)

These nonlinear relationships are displayed for carbonic acid in Fig 7.1 and Fig 7.2.
The diagrams show all possible combinations of 1 dependent and 2 independent
variables taken from the triple CT , pH, and n (or Alk = nCT ). Note how the
“simple transformation” of the variable n into Alk = nCT dramatically changes
the shape of the curves in Fig 7.2 (compared to Fig 7.1).
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Figure 7.1: Relationships between pH, CT , and n for the carbonic acid system (at 25 °C).

7.2 Three Equivalence Points
The carbonate system controls the pH in most natural waters. Due to the existence
of three major carbonate species (CO2, HCO –

3 , CO –2
3 ), textbooks usually focus

on three equivalence points:

EP0 (also known as EP of CO2): [H+] = [HCO –
3 ]

EP1 (also known as EP of HCO –
3 ): [H2CO3] = [CO –2

3 ]
EP2 (also known as EP of CO –2

3 ): [HCO –
3 ] = [OH–]

The identification of EPs as points of equal species concentrations, as done here
on the right-hand side, is an approximation, albeit a very good one. In Bjerrum
plots, these are points of intersections of two concentration curves. Fig 7.3 maps
the intersection points from the two lower diagrams (one for CT = 10−3 M and
one for 10−4 M) upwards into the pH-CT diagram where they constitute the small
circles on the EP trajectories.

Here, we observe a different behavior for the two external equivalence points
(EP0 and EP2) on the one hand and for the single internal equivalence point
EP1 on the other hand.
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Figure 7.2: Relationships between pH, CT , and Alk for the carbonic acid system
(at 25 °C).

Two External Equivalence Points: EP0 and EP2

The two external EPs depend on CT :

CT = 10−4 M CT = 10−3 M
EP0 at pH 5.18 4.68
EP2 at pH 9.86 10.56

One Internal Equivalence Point: EP1

The EP1 does not depend on CT . The intersection points of the CO2 and CO –2
3 curves

in the two lower diagrams in Fig 7.3 are both at the same fixed pH value of
1
2 (pK1 + pK2) = 8.34, which belongs to the high-CT limit of the red curve in the
upper diagram. Only when we decrease CT further below 10−4 M, i.e. for very
dilute acids, the simple relationship [CO2] = [CO –2

3 ] no longer works correctly.
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Figure 7.3: Equivalence points of
the carbonate system. Assignment
of the EPs in the upper pH-CT

diagram to the intersection points
of curves of species concentrations
(two lower diagrams).
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-] = [OH-][H2CO3] = [CO3
-2]

7.3 Acid–Base Titration with H2CO3 as Titrant
During titration, a titrant is added to the analyte to reach the target pH or equi-
valence point. Two cases (which are opposite of each other) will be considered:

var A: 100 mM H2CO3 solution is titrated by a strong base/acid (NaOH
and HCl)

var B: 100 mM NaOH solution is titrated by H2CO3

In var A the CT is kept fixed (and CB is varied), while in var B the CB is kept fixed
(and CT is varied). The aim is to calculate the carbonate speciation as a function
of pH. In both cases, we start with the ionization fractions aj (based on (3.58) and
shown in the bottom left diagram in Fig 3.4), which are the same for var A and
var B. From each aj, we then get the species concentration by multiplication with
CT : [j] = CT aj. The main point is that var A and var B differ in the CT value:

var A: CT = const with CT = 100 mM
var B: CT = (CB − w)/Y1 with CB = 100 mM

where the last line is taken from (5.32).
The obtained species distribution is displayed in Fig 7.4: var A (left) and var B

(right). The gray curve represents the total concentration CT as the sum of all
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Figure 7.4: Species distribution of H2CO3 as a function of pH for var A (left) and var B
(right). Top diagrams: concentrations in linear scale; bottom diagrams: logarithmic scale.

carbonate species. The top and bottom diagrams only differ by the concentration
scale: the y-axis is linear or logarithmic, respectively.

Although both variants rely on exactly the same ionization fractions, the pH
dependence of the species in var A (left) and var B differ significantly. While
the species distribution in var A (top left) replicates the shapes of the ioniza-
tion fractions, var B is completely out of line. [Note: In var B, pH < 5 is not
available in practice.]

7.4 Open vs Closed CO2 System
In an open CO2 system, the solution is in equilibrium with the CO2 of the atmosphere.
Let us compare it with the closed system:

var A: titration of 100 mM H2CO3 solution as “closed CO2 system”
(same as in § 7.3)

var C: titration of 100 mM H2CO3 solution as “open CO2 system”

As in § 7.3, we start with the same ionization fractions aj for both var A and var C,
as shown in in the left bottom diagram in Fig 3.4. As in § 7.3, the two variants
differ only in the functional dependence of CT , which will be derived now.

The “open system” is described by Henry’s law that partitions the CO2 between
the aqueous and gas phase: CO2(aq) is proportional to CO2(g), whereas CO2(aq) is
the undissociated acid H2CO3, i.e., the uncharged species [ 0 ]. Thus, we can write:

[0] = KH · P with KH = 10−1.47 M/atm (at 25 °C) (7.7)
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and with P as the partial CO2 pressure. Using [ 0 ] = CT a0, we obtain:

open CO2 system : CT = KHP

a0
(7.8)

Thus, the two variants differ in the CT value:

var A: CT = const with CT = 100 mM
var C: CT = KHP/a0 with P = 0.00039 atm (= 10−3.408 atm)

The carbonate speciation is displayed in Fig 7.5: var A (left) and var C (right).
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Figure 7.5: Species distribution of H2CO3 as a function of pH for var A (left) and
var C (right). Top diagrams: concentrations in linear scale; bottom diagrams: log scale.

The conclusions are similar to § 7.3. Although both variants rely on exactly the
same ionization fractions, the pH dependence of the species in var A and var C is
completely different. While the species distribution in var A (top left) replicates
the shapes of the ionization fractions, var C does not. The more alkaline the
solution becomes, the more CO2 is sucked out of the atmosphere (which increases
the CT exponentially). [Note: In var C, pH < 5 is not available in practice.]

Resume

The three variants (var A, var B, var C) discussed in the last two Sections exhibit
the universality of the ionization fractions aj (shown in the bottom left diagram
in Fig 3.4). They are independent of the chosen model, i.e. the functional
dependence of CT .
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7.5 Seawater
The analytical formulas in (5.32) and (5.49) are based on the assumption that
activities could be replaced by concentrations, {j}→ [ j ]. This is valid either for
dilute systems with near-zero ionic strength (I ≃ 0), or for non-dilute systems when
the thdyn equilibrium constants are replaced by conditional constants, K → cK.

Seawater has I ≃ 0.7 M, which is at the upper limit of the validity range of
common activity models (as discussed in Appendix A.2). Hence, in oceanography,
chemists prefer conditional equilibrium constants cK. In the literature, there are
several compilations for cK; one example is given in Table 7.1.

Table 7.1: Thermodynamic and conditional equilibrium constants for H2CO3 in pure
water and seawater (at 25 °C, 1 atm); cK values from [40].

thdyn K conditional cK
(pure water, I = 0) (seawater, I = 0.7 M)

pK1 5.18 6.0
pK2 10.33 9.1
pKw 14.0 13.1

Fig 7.6 (left diagram) compares the results calculated by (5.49) for both the
standard case (solid lines based on thdyn equilibrium constants K) and seawater
(dashed lines based on conditional constants cK). The solid curves in Fig 7.6
are identical to the solid curves for n = 0, 1, and 2 shown in the bottom left
diagram in Fig 5.10.
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Figure 7.6: pH–CT diagrams of the carbonic-acid system. Left: H2CO3 in pure water
(solid lines) vs H2CO3 in seawater (dashed lines). Right: closed-form expression (5.49) vs
numerical model (dots).

7.6 From Ideal to Real Solutions
All calculations so far (except in § 7.5) were performed for the ideal case (i.e., no
activity corrections, no aqueous complexation). Modern hydrochemistry software
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does not adhere to those restrictions; they perform activity corrections “automati-
cally”. In this respect, they are able to predict the relationship between pH and
a given CT for real systems more accurately.

Given is a carbonic acid system titrated with NaOH. Fig 7.6 (right diagram)
compares the results of the analytical formula (5.49) (solid lines) with the numerical-
model predictions (dots) using PhreeqC [33] or aqion [37]. (Similar results are
obtained when NaOH is replaced by KOH.)

As expected, deviations between the ideal and the real case only occur at high
CT values. There are two reasons: (i) with rising CT , the ionic strength increases;
consequently, the activity corrections are large and cannot be ignored; and (ii)
numerical models consider the formation of aquatic complexes such as NaHCO –

3 and
Na2CO3(aq), which are absent in the analytical approach. The aquatic complexes
become particularly relevant at high concentrations for n = 1 and 2. [Note: At very
high values of CT between 1 and 10 M Na2CO3 (i.e., the most upper part of the
green curve), we exit the applicability range of common activation models.]
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Our best advice is surely that offered by
Wittgenstein: to pass over in silence
what we cannot talk about.

— Folklore

8
Additional Topics

Contents
8.1 Strong Polyprotic Acids . . . . . . . . . . . . . . . . . . 77
8.2 Mixtures of Acids . . . . . . . . . . . . . . . . . . . . . . 79
8.3 HNA as Superposition of N Monoprotic Acids . . . . . 79

8.1 Strong Polyprotic Acids
The math description of strong polyprotic acids is simpler than that of weak
polyprotic acids, since strong acids never occur in the undissociated state at pH ≳ 0
(at least one H+is always released).1

Because the amount of the undissociated species is zero, [0] = 0 or a0 = 0, it is
not necessary to explicitly calculate the first dissociation step. In other words, we
can remove (5.21) or (5.27) from our set of N +3 equations and completely forego
the first dissociation constant K1 (keeping in mind that K1 is a large number — as
discussed in § 2.1.4). That is good news, because the first dissociation constant
of strong acids is often not known precisely enough.

To simplify our analytical formulas, we use the fact that K1 is very large. But
instead of handling K1 → ∞, it is easier to use the reciprocal case:

strong acid: x

K1
→ 0 for all practice relevant x (i.e. x ≤ 1) (8.1)

Thus, we divide our analytical formulas by K1 and then set all terms containing
x/K1 to zero (this is demonstrated, for example, in Appendix B.2.2 for the ionization
fractions). In this way, K1 disappears from all equations:

1as shown in Fig 2.1 on page 11
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78 8.1. Strong Polyprotic Acids

general case strong acid
K1, K2, . . . KN ⇒ �

�Z
ZK1, K2, . . . KN

The cumulative acidity constants kj in (3.60) are also redefined:

k1 = K1 =⇒ k1 = 1 (8.2)
k2 = K1K2 =⇒ k2 = K2 (8.3)
k3 = K1K2K3 =⇒ k3 = K2K3 (8.4)

and so on.

Ionization Fractions

The ionization fractions aj, originally defined in (3.58), simplify as follows:

general case strong acid

a0 =
(

1 + K1

x
+ K1K2

x2 + . . .

)−1

⇒ a0 = 0 (8.5)

a1 =
(

x

K1
+ 1 + K2

x
+ . . .

)−1

⇒ a1 =
(

1 + K2

x
+ K2K3

x2 + . . .

)−1

(8.6)

aj =
(

kj

xj

)
a0 ⇒ aj =

(
kj

xj−1

)
a1 for j >1 (8.7)

For the derivation see Appendix B.2.2.

Polynomials

For strong acids, the polynomial in (5.35) becomes one degree less in x (Note
that the summation now starts with j = 1):

0 =
N∑

j=1

{
x2 + (n − j)CT x − Kw

}
kjx

N−j (8.8)

Example N = 1

For a strong monoprotic acid, the sum in (8.8) runs only over one single term,
namely j = 1. With k1 = 1, we get a quadratic equation:

0 = x2 + (n − 1) CT x − Kw (8.9)

Note that this equation does not contain any acidity constant.

Example N = 2

For a strong diprotic acid, the polynomial in (8.8) becomes a cubic equation:

0 = x3 + {(n − 1) CT + K2} x2 + {(n − 2) CT K2 − Kw} x − K2Kw (8.10)

This equation can also be derived from (5.38) by applying the condition x/K1 =0
from (8.1).
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8.2 Mixtures of Acids
Until now we considered acid–base systems with one polyprotic acid. It is not
difficult to extend the approach to mixtures of several polyprotic acids:

acid a + acid b + acid c + ... with amounts of Ca, Cb, Cc, ...

The total sum of all acids will be abbreviated by CT = Ca + Cb + Cc + . . . . The
equivalent fraction n = n(x), i.e. the titration curve, of the multi-acid system (plus
a strong base of amount CB = nCT ) is then described by:

n = Ỹ1(x) + w(x)
CT

(8.11)

It has the same structure as (5.32), except Y1 is replaced by the generalized moment
Ỹ1 as a superposition of the individual acid’s Y1:

Ỹ1 = naY
(a)

1 + nbY
(b)

1 + ncY
(c)

1 + ... with coefficients nα = Cα

CT

(8.12)

The generalized moments ỸL (here for L=1) are built in the usual way from the
ionization fractions (i.e. according to (3.77)):

Y
(α)

L ≡
Nα∑
j=0

jL a
(α)
j (8.13)

Here the ionization fractions a
(α)
j are determined by the (cumulative) acidity

constants k
(α)
j of the individual acids, according to (3.25). The sum runs from j

= 1 to Nα, which is the number of protons of acid α (= a, b, c).

Example: H3PO4 + H2CO3

Given is a mixture of two acids: phosphoric acid plus carbonic acid with equal
amounts: Cphos = Ccarb = CT /2. The first moment Ỹ1 of the two-acid system is
displayed as the blue curve in the upper diagram of Fig 8.1. It is simply the sum
of Y

(phos)
1 and Y

(carb)
1 . This curve approaches the value 5 when pH → 14, which

is the degree of the two-acid system: N = 3 + 2 = 5.
The bottom diagram in Fig 8.1 displays the individual ionization fractions of

the two acids. To recall: The blue curve (Y1) in the top diagram represents the
“titration curve” in the high-CT limit.

8.3 HNA as Superposition of N Monoprotic Acids
Is it possible to generate the titration curve of an N -protic acid (defined by K1,
K2 to KN) by a superposition of “virtual” N monoprotic acids having the acidity
constants K1, K2 to KN? Answer: This is only possible approximately (never
exactly). The underlying math will be demonstrated for the diprotic acid H2A.
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Figure 8.1: Y1 and aj

for a system composed
of phosphoric and
carbonic acid.
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Since the general formula for the titration curve n(x) is n = Y1 + w/CT

(see (5.32)), it is sufficient to focus on Y1:

Y1 = a1 + 2a2 = (a1 + a2) + a2 (8.14)

From (3.58) we then get:

a1 + a2 =
(

K1

x
+ K1K2

x2

)(
1 + K1

x
+ K1K2

x2

)−1

= K
(a)
1
x

(
1+ K

(a)
1
x

)−1

≡ a
(a)
1

(8.15)

a2 = K2

x

(
x

K1
+ 1 + K2

x

)−1

= K
(b)
1
x

(
1+ K

(b)
1
x

)−1

≡ a
(b)
1

(8.16)

Here we have introduced new acidity constants K
(a)
1 and K

(b)
1 , which are (almost)

identical with the two acidity constants of H2A:

K
(a)
1 = K1

(
1+ K2

x

)
K2/x≪1−−−−−−−−→

pH→0
K

(a)
1 ≃ K1 (8.17)

K
(b)
1 = K2

(
1+ x

K1

)
x/K1≪1−−−−−−−−→
pH→14

K
(b)
1 ≃ K2 (8.18)

In fact, a
(a)
1 and a

(b)
1 are just the ionization fractions of the two monoprotic acids that
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define their first moments Y
(a)

1 =a
(a)
1 and Y

(b)
1 =a

(b)
1 . This leads to the conclusion:

Y1 = a1 + 2a2︸ ︷︷ ︸
diprotic acid

⇐⇒ Y1 = Y
(a)

1 + Y
(b)

1︸ ︷︷ ︸
superposition of 2 monoprotic acids

which can be extended to any N -protic acid:

Y1 = a1 + 2a2 + 3a3 + . . .︸ ︷︷ ︸
N -protic acid

⇐⇒ Y1 = Y
(a)

1 + Y
(b)

1 + Y
(c)

1 + . . .︸ ︷︷ ︸
superposition of N monoprotic acids

Note that this is only an approximation, as indicated by the arrows in Eqs. (8.17)
and (8.18). The “quality” of this approximation will be demonstrated in the
following two examples.

Two Examples

Two examples are presented in Fig 8.2 where Y1 of carbonic acid (H2A) and
phosphoric acid (H3A) are generated from two and three “virtual” monoprotic acids:

carbonic acid : Y1 = a
(a)
1 + a

(b)
1

phosphoric acid : Y1 = a
(a)
1 + a

(b)
1 + a

(c)
1

The blue curves in the present diagram are de facto indistinguishable from the
blue curves (showing Y1) in Fig 5.8.
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Figure 8.2: Y1 of carbonic and phosphoric acids generated as superposition of two and
three “virtual” monoprotic acids.
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One small observation can disprove a statement, while
millions can hardly confirm it.

— Scientific principle

A
Activity Models

Contents
A.1 Activity vs Concentration . . . . . . . . . . . . . . . . . 85
A.2 Activity Corrections . . . . . . . . . . . . . . . . . . . . . 86

A.1 Activity vs Concentration
Ions in solution interact with each other and with H2O molecules. In this way,
ions behave chemically like they are less concentrated than they actually are
(or measured). This effective concentration, which is available for reactions, is
called activity:

activity = effective concentration ≤ real concentration

The concentration [ j ] of the aqueous species j is converted to the activity {j}
using the activity coefficient γj:

{j} = γj [ j ] (A.1)

In the limit of infinitely dilute systems, the activity coefficient becomes 1:

ideal solution: γj = 1 =⇒ {j} = [ j ] (A.2)

Since γj corrects for electrostatic shielding by other ions, γj depends on the
ionic strength:

I = 1
2
∑

j

z2
j [ j ] (A.3)

The sum runs over all ions in the solution. Due to the square of charge zj , multivalent
ions contribute particularly strongly to the ionic strength.
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A.2 Activity Corrections

A.2.1 Four Activity Models
For the activity corrections γ or lg γ, several semi-empirical approaches are available
(each with its own validity range dictated by the ionic strength):

model equation validity range

Debye-Hückel (DH): lg γj = −Az2
j

√
I I <10−2.3 M (A.4)

Extended DH: lg γj = −Az2
j

( √
I

1+Bαj

√
I

)
I < 0.1 M (A.5)

Davies: lg γj = −Az2
j

( √
I

1+
√

I
− 0.3I

)
I ≤ 0.5 M (A.6)

Truesdell-Jones: lg γj = −Az2
j

( √
I

1+Bα0
j

√
I

)
+ bjI I < 1 M (A.7)

All quantities carrying the subscript j are ion-specific parameters (αj, α0
j , and

bj). On the other hand, the two prefactors A and B depend on the temperature
T and the dielectric constant εr:

A = A0 · (εrT )−3/2 with A0 = 1.824 · 106 K3/2 M−1/2 (A.8)
B = B0 · (εrT )−1/2 with B0 = 50.28 nm−1 K1/2 M−1/2 (A.9)

For water at 25°C (T = 298.15 K) and with εr = 78.54 C2/(J·m), we get

A = 0.5089 M−1/2 (A.10)
B = 3.286 nm−1 M−1/2 (A.11)

Please note the length unit in the last equation: 1 nm = 10−9 m = 10 Ångström.
The derivation of the prefactors A and B is given in § A.2.2.

Alternative Definitions (Two Pitfalls)

The prefactors A and B depend on the units chosen (and other conventions). So be
careful when comparing them with other prefactors given in the literature.

Example 1. If the activity corrections are expressed in terms of ln γ (instead
of lg γ), then A should be multiplied by ln 10:

A =⇒ A · (ln 10) = 1.172 M−1/2 (A.12)

Example 2. If B in (A.11) is expressed using the (non-SI) unit Ångström (instead
in nm), then B should be divided by 10:

B =⇒ B/10 = 0.3286 Å−1 M−1/2 (A.13)
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A.2.2 The Prefactors A and B

The calculation of the prefactors A and B in § A.2.1 is based on the following
physical constants:

NA = 6.022 · 1023 mol−1 (A.14)
e = 1.602 · 10−19 C (A.15)
kB = 1.381 · 10−23 J/K (A.16)
ε0 = 8.854 · 10−12 C2J−1m−1 (A.17)
εr = 78.54 (for water) (A.18)

Prefactor A

A =
√

2πNA

ln 10

(
e2

4πkB ε0εrT

)3/2

= A0 · (εrT )−3/2 (A.19)

with

A0 =
√

2πNA

ln 10

(
e2

4πkB ε0

)3/2

(A.20)

=
√

2π 6.02 · 1023 mol−1

ln 10 ·
(

2.57 · 10−38 C2

4π 1.38 · 10−23 J/K 8.85 · 10−12 C2/(J·m)

)3/2

= 8.45 · 1011 mol−1/2 · ( 1.67 · 10−5 m·K )3/2

= 8.45 · 1011 mol−1/2 · 6.83 · 10−8 (m·K)3/2

= 5.77 · 104 K3/2
(

m3

mol

)1/2

= 5.77 · 104 · 103/2 K3/2 M−1/2
(

with M = mol
L = mol

10−3 m3

)
= 1.824 · 106 K3/2 M−1/2

For water at 25°C we have:

εrT = 78.54 · 238.15 K = 2.34 · 104 K (A.21)

which yields

(εrT )−3/2 = 2.79 · 10−7 K−3/2 (A.22)

Taken together, we obtain the result shown in (A.10):

A = A0 · (εrT )−3/2 = 0.5089 M−1/2 (A.23)
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Prefactor B

B =

√
2NA e2

kBε0εrT
= B0 · (εrT )−1/2 (A.24)

with

B0 =

√
2NA e2

kBε0
(A.25)

=
(

2 · 6.02 · 1023 · 2.57 · 10−38

1.38 · 10−23 · 8.85 · 10−12 · m·K
mol

)1/2

=
(

2.53 · 1020 m·K
mol

)1/2

= 1.59 · 1010 m1/2

mol1/2 · K1/2

= 1.59 · 1010 1
m 103/2 K1/2

M1/2

(
with M = mol

L = mol
10−3 m3

)
= 50.3 nm−1 K1/2 M−1/2 (

with 1 m = 109 nm
)

For water at 25°C, using (A.21), we obtain:

(εrT )−1/2 = 6.54 · 10−3 K−1/2 (A.26)

Taken together, we obtain the result shown in (A.11):

B = B0 · (εrT )−1/2 = 3.286 nm−1 M−1/2 (A.27)
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The man who does not read good books has no
advantage over the man who cannot read.

— Mark Twain
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B.1 Polynomials in x

B.1.1 The Subsystem HNA
The ionization fractions aj of an N -protic acid are functions of x (j = 1 to N):

aj(x) =
(

kj

xj

)
a0 with a0(x) =

(
1 + k1

x
+ k2

x2 + · · · + kN

xN

)−1

(B.1)

The task is to solve it for x, that is, to find a formula that calculates x for a given
value of aj. This will lead to a polynomial of degree N in x. For this purpose,
let’s start with a0 and transform it in the following way:

1
a0

=
(

1 + k1

x
+ k2

x2 + . . .

)
= 1

xN

(
xN + k1x

N−1 + · · · + kN

) ∣∣∣∣ · xN

xN

a0
= xN + k1x

N−1 + · · · + kN =
N∑

j=0

kjx
N−j (B.2)

It yields a polynomial of order N in x (i.e. the highest power of x is N):

0 = c0 · xN + k1x
N−1 + · · · + kN and c0 ≡ −

(
1 − a0

a0

)
(B.3)
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90 B.1. Polynomials in x

The result can be generalized to any other aj. To do this, insert a0 = (xj/kj) aj

into the left-hand side of (B.2):(
kj

aj

)
xN−j =

N∑
i=0

kix
N−i (B.4)

Again, the obtained polynomial is of degree N :

0 = cj · xN−j +
N∑

i ̸=j

kix
N−i and cj ≡ −

(
1 − aj

aj

)
kj (B.5)

For j = 0 (and with k0 = 1), this formula reduces to (B.3).

B.1.2 The General Case: HNA + H2O + Strong Base
The titration of a polyprotic acid HNA by a strong base is described by (5.32),
which we now write as

Y1(x) = n − w(x)
CT

with n = CB

CT

(B.6)

For Y1 on the left-hand side, we apply (3.80). That is,

Y1(x) =
∑N

j=0 j · kjx
N−j∑N

j=0 kjxN−j
(B.7)

Inserting it into (B.6) and multiplying both sides by
∑

kjx
N−j yields:

N∑
j=0

j · kjx
N−j =

{
n − w

CT

} N∑
j=0

kjx
N−j

0 =
N∑

j=0

{
j − n + w

CT

}
kjx

N−j

=
N∑

j=0

{CT (j − n) + w} kjx
N−j (both sides are multiplied by CT )

=
N∑

j=0

{
CT (j − n) − x + Kw

x

}
kjx

N−j (w is replaced by (5.34))

After multiplication of both sides by −x, we get a polynomial of degree N +2 in x:

0 =
N∑

j=0

{
x2 + (n − j) CT x − Kw

}
kjx

N−j (B.8)

To show that the polynomial is indeed of degree N +2 you can rewrite (B.8) as

0 =
N+2∑
j=0

fj xN+2−j with fj = kj + kj−1 (n+1−j) CT − Kwkj−2 (B.9)

The cumulative equilibrium constants kj are defined in (3.14). The first and the last
coefficients of this polynomial are: f0 = 1 and fN+2 = −KwK1K2 · · · KN . [Note:
kj is per definition zero for negative values of j.]

Version: December 17, 2023



B. Math Relationships 91

Special Case: CT → ∞

Let us divide both sides of (B.8) by CT :

0 =
N∑

j=0

{
x2

CT

+ (n − j) x − Kw

CT

}
kjx

N−j (B.10)

In the limit CT → ∞, only the second term in the curly braces survives and thus
(B.8) simplifies to a polynomial of degree N +1:

0 =
N∑

j=0

(n − j) kjx
N+1−j (B.11)

B.2 Approximations for aj

B.2.1 Piecewise Linearization of lg aj

We start with the definition of a0 in (3.58):

a−1
0 =

(
1 + k1

x
+ k2

x2 + · · · + kN

xN

)
=
(

1 + K1

x
+ K1K2

x2 + · · · + K1K2 · · · KN

xN

)
(B.12)

In each pH interval, as defined in the left diagrams in Fig 3.5 on page 29, we can
approximate a0 as follows (because K1 > K2 > ... > KN):

0th interval (pH < pK1) where x > K1 =⇒ a−1
0 ≃ 1

1st interval (pK1 < pH < pK2) where K1 > x > K2 =⇒ a−1
0 ≃ k1/x

2nd interval (pK2 < pH < pK3) where K2 > x > K3 =⇒ a−1
0 ≃ k2/x2

· · ·
Nth interval (pH > pKN) where x < KN =⇒ a−1

0 ≃ kN/xN

Thus, we can approximate lg a0 in the ith interval by

lg a0 ≃ lg xi

ki

= i lg x − lg ki = −i pH + pki (B.13)

where pki = pK1 + pK2 + · · · + pKi and pK0 = 0.
The generalization of this result to all other aj is simple. Again, we refer to (3.58):

aj =
(

kj

xj

)
a0 =⇒ lg aj = lg a0 + j pH − pkj (B.14)

Inserting the approximation (B.13) for lg a0 yields

lg aj ≃ (j − i) pH + (pki − pkj) for the ith interval (B.15)

This is a linear function of pH with integer-valued slope (j −i) and offset (pki − pkj).
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Example: Phosphoric Acid

Phosphoric acid is defined by N =3 equilibrium constants (pK1 = 2.15, pK2 = 7.21,
pK3 = 12.35). Equation (B.15) is plotted in Fig 3.6 on page 30. Each lg aj consists
of four linear segments, with one segment in each interval i. In particular, we have:

• a0 ≃ (0 − i) · pH + (pki − pk0) (blue dashed curve)

i=0: (0 − 0) pH + (0 − 0) = 0 = 0
i=1: (0 − 1) pH + (pk1 − 0 ) = − pH + pK1 = − pH + 2.15
i=2: (0 − 2) pH + (pk2 − 0 ) = −2 pH + (pK1+pK2) = −2 pH + 9.35
i=3: (0 − 3) pH + (pk3 − 0 ) = −3 pH + (pK1+pK2+pK3) = −3 pH + 21.7

• a1 ≃ (1 − i) · pH + (pki − pk1) (brown dashed curve)

i=0: (1 − 0) pH + (0 − pk1) = pH − pK1 = pH − 2.15
i=1: (1 − 1) pH + (pk1 − pk1) = 0 = 0
i=2: (1 − 2) pH + (pk2 − pk1) = − pH + pK2 = − pH + 7.21
i=3: (1 − 3) pH + (pk3 − pk1) = −2 pH + (pK2 + pK3) = −2 pH + 19.55

• a2 ≃ (2 − i) · pH + (pki − pk2) (green dashed curve)

i=0: (2 − 0) pH + (0 − pk2) = 2 pH − (pK1 + pK2) = 2 pH − 9.35
i=1: (2 − 1) pH + (pk1 − pk2) = pH − pK2 = pH − 7.21
i=2: (2 − 2) pH + (pk2 − pk2) = 0 = 0
i=3: (2 − 3) pH + (pk3 − pk2) = − pH + pK3 = − pH + 12.35

• a3 ≃ (3 − i) · pH + (pki − pk3) (orange dashed curve)

i=0: (3 − 0) pH + (0 − pk3) = 3 pH − (pK1+pK2+pK3) = 3 pH − 21.7
i=1: (3 − 1) pH + (pk1 − pk3) = 2 pH − (pK2+pK3) = 2 pH − 19.55
i=2: (3 − 2) pH + (pk2 − pk3) = pH − pK3 = pH − 12.35
i=3: (3 − 3) pH + (pk3 − pk3) = 0 = 0

B.2.2 Strong Polyprotic Acids
The ionization fractions aj are defined in (3.58). They simplify for strong acids,
where the condition x/K1 → 0 holds for all relevant x (as indicated in (8.1)).

Let’s start with

a−1
0 =

(
1 + k1

x
+ k2

x2 + . . .

)
= K1

x

(
x

K1
+ 1 + K2

x2 + . . .

)
= K1

x

(
1 + K2

x2 + . . .

)
because x/K1 ≃ 0

It yields

a0 = x

K1

(
1 + K2

x2 + . . .

)−1

= 0 because x/K1 ≃ 0 (B.16)
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According to the general formula a1 = (K1/x) a0, the term in the brackets in
(B.16) represents a1:

a1 =
(

1 + K2

x2 + . . .

)−1

(B.17)

and we successively get

a0 = 0 (B.18)

a1 =
(

1 + K2

x2 + K2K3

x3 + . . .

)−1

=
(

1 + k̃2

x2 + k̃3

x3 + . . .

)−1

(B.19)

aj =
(

k̃j

xj−1

)
a1 for j > 0 (B.20)

with “redefined” cumulative acidity constants k̃j:

k̃0 = 0, k̃1 = 1, k̃2 = K2, . . . k̃N = K2K3 · · · KN (B.21)

In this way, K1 disappeared from all equations.

B.3 Simple Relationships between aj and YL

B.3.1 Relationships for YL

The moments YL are defined as finite sums over the ionization fractions aj:

YL ≡
N∑

j=0

jLaj = 0La0 + 1La1 + 2La2 + · · · + NLaN (B.22)

with the special case Y0 =1 (mass balance) — see (3.63) and (3.78). [Note: 00 =1.]
An alternative relationship between aj and Y1 can be established in the following

sequence of steps:

n = n

n Y0 = n (because Y0 = 1)
n Y0 − Y1 = n − Y1 (Y1 subtracted from both sides)
n
∑

aj −
∑

j aj = n − Y1 (using (B.22) on the left-hand side)

which finally yields the result:

N∑
j=0

(n − j) aj = n − Y1 or
N∑

j=0

(n − j) [j] = (n − Y1) CT (B.23)
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Equivalence Points

The two types of equivalence points are characterized by (c.f. (3.69) and (3.70)):

semi-EPj : pH = pKj =⇒ aj = aj−1 ≃ 1
2 (B.24)

EPj : pHj ≡ 1
2 (pKj + pKj+1) =⇒ aj(pHj) ≃ 1 (B.25)

while all other ionization fractions are almost zero. In this way, the whole sum
in (B.22) is reduced to one or two terms:

YL(pKj) = (j − 1)L aj−1 + jL aj = 1
2 {(j − 1)L + jL} for L ≥ 1 (B.26)

YL(pHj) = jL aj ≃ jL for L ≥ 1 (B.27)

B.3.2 Maximum of aj

The maximum (extremum) of an ionization fraction aj is obtained under the
condition that its 1st derivative should vanish:

daj

d pH = 0 ⇐⇒ extremum of aj (B.28)

According to (B.47) on page 96, this is equivalent to the condition:

(j − Y1) aj = 0 or j − Y1 = 0 (B.29)

From (B.23) we get
N∑

j=0

(j − i) ai = 0 (B.30)

or, more explicitly,

−ja0 − (j−1) a1 − · · · − aj−1 + 0 + aj+1 + · · · + (N −j) aN = 0 (B.31)

From the viewpoint of aj , only its two neighbors aj−1 and aj+1 are of relevance (all
other are nearly zero). Thus, (B.30) collapses to −aj−1 + aj+1 = 0, that is

maximum of aj ⇐⇒ aj−1 = aj+1 or aj+1

aj−1
= 1 (B.32)

The pH at the maximum is obtained from (3.19):

aj+1

aj−1
= [j+1]

[j−1] = KjKj+1

x2 =⇒ xmax = (KjKj+1)1/2 (B.33)

According to (3.45), the ionization fraction aj has its maximum at the equivalence
point:

maximum of aj at EPj with pH = 1
2 (pKj + pKj+1) (B.34)

From mass conservation, i.e. (3.63), one gets the value of aj at the maximum as:

aj(xmax) = 1 − aj−1 − aj+1 = 1 − 2aj−1 (B.35)

which, in most cases, is close to 1.
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B.4 Derivatives with Respect to pH

B.4.1 Basic Equations
Given is

x = {H+} = 10−pH = e−(ln 10) pH (B.36)

The 1st and the kth derivative of x with respect to pH are:

dx

d pH = −(ln 10) x (B.37)

dkx

d pHk
= −(ln 10)k x (B.38)

This result is used to differentiate any given function f(x) with respect to pH
(by application of the chain rule):

df(x)
d pH = dx

d pH
df(x)

dx
= −(ln 10)k x

df(x)
dx

(B.39)

Example 1

For w(x) = Kw/x−x, introduced in (4.7), we get:

dw(x)
d pH = ln 10 (Kw/x + x) = (ln 10) (w + 2x) (B.40)

d2w(x)
d pH2 = (ln 10)2 (w + 2x − 2x) = (ln 10)2 w (B.41)

All higher derivatives repeat this pattern:

dkw(x)
d pHk

= (ln 10)k

{
w for k even
w + 2x for k odd (B.42)

Example 2

Let us consider the function, g = 1/a0, that is

g(x) = 1 + k1

x
+ k2

x2 + · · · + kN

xN
(B.43)

Its first derivative is then given by

dg(x)
d pH = ln 10

(
k1

x
+ 2 k2

x2 + · · · + N
kN

xN

)
= ln 10

a0
(a1 + 2a2 + · · · + NaN)

(B.44)

where on the right-hand side, (3.25) was applied. Using the definition of Y1 in (3.79),
it yields the interesting result:

dg(x)
d pH = d

d pH
1
a0

= ln 10 Y1

a0
(B.45)
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B.4.2 First Derivative of aj and YL

Ionization Fractions

Let us start with the 1/st/ derivative of a0 by applying the results of the last
example (particularly (B.45)):

da0(x)
d pH = d

d pH
1

g(x) = − 1
g2

dg(x)
d pH = −a2

0 (ln 10) Y1

a0
= (− ln 10) Y1a0 (B.46)

In the same way, we get from aj = (kj/xj) a0 the general result for each ion-
ization fraction aj:

daj(x)
d pH = (− ln 10) (Y1 − j) aj (B.47)

Moments

Applying the above results to the sums over aj yields

d
d pH

N∑
j=0

aj = (− ln 10)
N∑

j=0

(Y1 − j) aj = (− ln 10) (Y1 − Y1) = 0 (B.48)

d
d pH

N∑
j=0

jaj = (− ln 10)
N∑

j=0

j (Y1 − j) aj = (− ln 10) (Y 2
1 − Y2) (B.49)

The first relation, which gives zero, is obvious because it represents the derivation
of a constant, namely d1/dpH) = 0. Equation (B.49) is just the 1st derivative of Y1:

dY1

d pH = (− ln 10) (Y 2
1 − Y2) (B.50)

In the same way, for all higher moments YL we get:

dYL

d pH = (− ln 10)
N∑

j=0

jL (Y1 − j) aj = (− ln 10) (Y1YL − YL+1) (B.51)

B.4.3 Higher Derivatives of aj and YL

The 2nd derivative of aj is given by

d2aj(x)
d pH2 = (− ln 10) d

d pH (Y1 − j) aj

= (− ln 10)
{

aj
dY1

d pH + (Y1 − j) daj

d pH

}
(use of (B.47) and (B.50))

= (− ln 10)2 {(Y 2
1 − Y2) + (Y1 − j)2} aj (B.52)
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The 2nd derivative of Y1 is given by

d2Y1

d pH2 = (− ln 10) d
d pH (Y 2

1 − Y2)

= (− ln 10)
{

2Y1
dY1

d pH − dY2

d pH

}
= (− ln 10)2 {2Y1 (Y 2

1 − Y2) − (Y1Y2 − Y3)
}

= (− ln 10)2 {2Y 3
1 − 3Y1Y2 + Y3

}
(B.53)

The 3rd derivative of Y1 is:

d3Y1

d pH3 = (− ln 10)2 d
d pH (2Y 3

1 − 3Y1Y2 + Y3)

= (− ln 10)2
{

3 (2Y 2
1 − Y2)

dY1

d pH − 3Y1
dY2

d pH + dY3

d pH

}
= (− ln 10)3 {3 (2Y 2

1 − Y2)(Y 2
1 − Y2) − Y1 (3Y1Y2 − 4Y3) − Y4

}
(B.54)
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The man who does not read good books has no
advantage over the man who cannot read.

— Mark Twain

C
Proton Balance

Contents
C.1 Diprotic Acid . . . . . . . . . . . . . . . . . . . . . . . . . 99
C.2 General Case: N-protic Acid . . . . . . . . . . . . . . . . 101

C.1 Diprotic Acid
PRL. The proton balance is often used in acid-base theory. It is a balance between
the species that have excess protons versus those that are deficient in protons
(relative to a defined proton reference level –– PRL):

TOT H = excess protons − deficient protons (C.1)

Subsystem H2O. The simplest case is pure water with its three species H+, OH–,
and H2O. Choosing H2O as the reference level, the species H+ is enriched in 1 proton
(excess proton), while OH– is depleted in 1 proton (deficient proton):

PRL excess protons deficient protons
H2O [H+] [OH–] (C.2)

The proton balance of the subsystem “pure water” is then expressed by:

TOT H|w = [H+] − [OH–] = −w(x) (C.3)

where w(x) was introduced in (4.7). Thus, for pure water we have TOT H|w = 0.
Because water is ever-present in an acid-base system, H+ and OH– are always

a part of the proton balance — see Eqs. (C.15) and (C.16) below.
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100 C.1. Diprotic Acid

Subsystem H2A. The diprotic acid H2A has three distinct reference levels denoted
by n = 0, 1, and 2:

PRL excess protons deficient protons TOT H|n
n = 0 H2A 0 [HA–] + 2[A–2] − [HA–] − 2[A–2] (C.4)
n = 1 HA– [H2A] [A–2] [H2A] − [A–2] (C.5)
n = 2 A–2 2[H2A] + [HA–] 0 2[H2A] + [HA–] (C.6)

How to write down these equations?
In (C.4), H2A is the reference level. There are no species that have more

protons than H2A, hence, there is nothing to add to the left-hand side. Conversely,
HA– is deficient by 1 proton and A–2 by 2 protons; therefore, both species enter
the right-hand side. (If a species has lost 2 protons relative to the PRL, its
concentration is multiplied by 2.)

In (C.5), HA– is the reference level. From this perspective, H2A has 1 excess
proton (the species enters the left-hand side), while A–2 is deficient by 1 proton
(the species enters the right-hand side).

In (C.6), A–2 is the reference level. Now, H2A has 2 excess protons and HA–

has 1 excess proton (both species enter the left-hand side); but there are no species
that have less protons than A–2 (i.e. no species enters the right-hand side).

Taken together, the three PRL of the subsystem “diprotic acid”, denoted by
H2–nA–n (for n = 0, 1, 2), yield the following proton balance equation:

PRL TOT H = excess protons − deficient protons
H2–nA–n TOT H|n = n [H2A] + (n − 1)[HA–] + (n − 2)[A–2] = 0 (C.7)

This one-liner comprises all three equations (C.4) to (C.6). [Example: In the case
of a carbonic-acid system the three PRL correspond to H2CO3, HCO –

3 , and CO –2
3 .]

Fig C.1 illustrates how the choice of the origin (yellow dots) of a coordinate
system (x axis: species; y axis: number of excess/deficient protons) alters the
proton balance equation.

For example, given a mono-, di-, and tri-protic acid we have for n = 0:

N = 1 : TOT H|0 = −[A–] (C.8)
N = 2 : TOT H|0 = −[HA–] − 2[A–2] (C.9)
N = 3 : TOT H|0 = −[H2A–] − 2[HA–2] − 3[A–3] (C.10)

H2A + H2O. The combined system as the sum of subsystem “pure water” and
subsystem “diprotic acid” obeys the proton balance for the three PRL at H2–nA–n

(with n = 0, 1, 2):

TOT H|w + TOT H|n =
[H+] − [OH–] + n [H2A] + (n − 1)[HA–] + (n − 2)[A–2] (C.11)

The two species, H+ and OH–, that appear in this equation trace back to the H2O-
reference level in (C.2). They have a permanent place in any H2O containing system.

Note: The PRLs are usually chosen at equivalence points EPn (with integer
n). There is a direct correspondence between PRL at n and EPn.
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H+

A-2 HA- H2A

1

2

H+

A-2 HA- H2A

-1

-2

PRL: H2A

TOT H|0 = – HA- – 2A-2

PRL: A-2H+

A-2 HA- H2A

1

2

TOT H|2 = 2H2A + HA-

H+

A-2 HA- H2A

-1

1

TOT H|1 =  H2A – A-2

PRL: HA-

Figure C.1: PRL of a diprotic
acid.

C.2 General Case: N-protic Acid
Subsystem HNA. It is not difficult to generalize the results of the previous
paragraph to an N -protic acid HNA. It has N+1 distinct PRL (i.e. for each species
HN–nA–n one proton reference level, or the corresponding EPn):

PRL HN–nA–n: TOT H|(acid)
n ≡ n[HNA] + (n − 1)[Hn–1A–]+

+ (n − 2)[Hn–2A–2] + ... + (n − N)[Hn–NA–N] = 0 (C.12)

or in compact notation:

PRL HN–nA–n: TOT H|(acid)
n ≡

N∑
j=0

(n − j) [ j ] = 0 (C.13)

According to (B.23), the last equation can also be expressed by

TOT H|(acid)
n = (n − Y1) CT = 0 (C.14)

HNA + H2O. The proton balance of the whole system is the sum of (C.3)
and (C.14):

TOT H|n ≡ TOT H|w + TOT H|(acid)
n (C.15)

which is equivalent to

TOT H|n = −w + (n − Y1) CT = 0 (C.16)
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This proton-balance equation, in the form of 0 = [H+] − [OH–] + nCT − Y1CT ,
is equivalent to (5.25) and (5.31).

Charge Balance. The concept of proton balance is more general than the concept
of charge balance (electro-neutrality). Only in the special case of n = 0 do the
charge balance and proton balance coincide:

proton
balance

charge
balance

The last equation is equivalent to the charge-balance equation:

0 = [H+] − [OH–] − [Hn–1A–] − 2[Hn–2A–2] − ... − N [A–N] (C.17)
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