How to Specify the Carbonate System?

There are three alternatives to determine the carbonate system:

The corresponding input panels are part of the main input window.

Input of DIC

aqion_DIC_input

The right screenshot shows the DIC input panel (in mg/L Carbon or in mmol/L). Unfortunately, DIC does not belong to the list of common water analysis parameters. An alternative is then the alkalinity (if provided).

If neither DIC nor alkalinity data is available, then you can enter any initial DIC value (say, 1 mM or 1 mg/L) and let the program calculate the unknown DIC by charge-balance adjustment with DIC. [Warning: This method requires that the measured pH and all major ions are sufficiently accurate. Otherwise, the calculated DIC will not be very reliable.]

Input of Alkalinity

aqion_DIC_input

Instead of DIC the carbonate system can be specified by the measured alkalinity (also known as total alkalinity or M alkalinity). This quantity is closely related to the carbonate hardness (CH) and the Acid Neutralizing Capacity:

Alkalinity  =  CH  ≈  ANC to pH 4.3 … 4.5

After calculation, all relevant parameters of the carbonate system (alkalinity, ANC, and the complete carbonate speciation) are displayed in the output tables.

Two remarks:

  • The numerical treatment of alkalinity differs from the calculation of buffer capacities (ANC, BNC). The calculation of alkalinity is hard-wired in PhreeqC (wich is the numerical solver in aqion). On the other hand, the buffer capacities are an outcome of reaction calculations (with HCl or NaOH) to a specific equivalence point. The latter approach, for example, allows the imitation of hydroxide precipitation.

  • Just after the first equilibrium calculation alkalinity (when entered by the user) is converted into a DIC value and stored as such (DIC together with pH completely determine the alkalinity and vice versa).

[last modified: 2015-07-05]